Zeitschrift für Physik A Hadrons and Nuclei

, Volume 354, Issue 3, pp 333–341 | Cite as

Production of classical pion field and/or disoriented chiral condensate

  • A. A. Anselm
  • M. G. Ryskin
  • A. G. Shuvaev


We discuss the possibility of production of a classical pion field in high energy nuclei-nuclei collisions. We show that the occupation number for the produced pions can be large as required for the case of a classical field.

By examination of the cooling we conclude that in the “quench” scenario it is unlikely to produce a large domain of DCC.

The size of domain can be essentially larger due to the temperature dependence of the parameters of the effective Lagrangian. However even in this case the decay of the DCC leads to the production of no more than several tenths of pions which are not easy to distinguish from the “normal” pions.


25.70.-z 11.30.Rd 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.V. Andreev: Pis’ma v Zh. Eksp. Teor. Fiz.33 (1981) 384.Google Scholar
  2. 2.
    V.A. Karmanov, A.E. Kurdryavtsev: ITEP-88-1983.Google Scholar
  3. 3.
    A.A. Anselm: Phys. Lett.B217 (1989) 169.ADSCrossRefGoogle Scholar
  4. 4.
    A.A. Anselm, M.G. Ryskin: Phys. Lett.B266 (1991) 482.ADSCrossRefGoogle Scholar
  5. 5.
    J.D. Bjorken: Int. J. Mod. Phys.A7 (1992) 4189; Acta Phys. Pol.B23 (1992) 561.ADSCrossRefGoogle Scholar
  6. 6.
    J.-P. Blaizot, A. Krzywicki: Phys. Rev.D46 (1992) 246.ADSGoogle Scholar
  7. 7.
    K.L. Kowalski, C.C. Taylor: CWRUTH-92-6, hep-ph/9211289 (1992).Google Scholar
  8. 8.
    J.D. Bjorken, K.L. Kowalski, C.C. Taylor: SLAC-PUB-6109 (1993).Google Scholar
  9. 9.
    K. Rajagopal, F. Wilczek: Nucl. Phys.B399 (1992) 395.ADSGoogle Scholar
  10. 10.
    K. Rajagopal, F. Wilczek: Nucl. Phys.B404 (1993) 577.ADSCrossRefGoogle Scholar
  11. 11.
    C.M.G. Lattes, J. Fujimoto, S. Hasegawa: Phys. Rep.65 (1980) 151.ADSCrossRefGoogle Scholar
  12. 12.
    I.N. Mishustin, L.M. Satarov, H. Stöcker, W. Greiner: Phys. Lett.B276 (1992) 403.ADSCrossRefGoogle Scholar
  13. 13.
    A.I. Akhiezer, V.B. Berestetsky: Quantum electrodynamics. Moscow, 1953.Google Scholar
  14. 14.
    V.A. Abramovsky, V.N. Gribov, O.V. Kancheli: Sov. J. Nucl. Phys.18 (1973) 308.Google Scholar
  15. 15.
    J.D. Bjorken et al.: MiniMax: A Revised Proposal for T-864, April 1993.Google Scholar
  16. 16.
    A.A. Anselm, M. Bander: JETP Lett.59 (1994) 503.ADSGoogle Scholar
  17. 17.
    S. Weinberg: PhysicaA96 (1979) 327; J. Gasser, H. Leutwyler: Ann. Phys. (N.Y.)158 (1984) 142; Nucl. Phys.B250 (1985) 465; 517.ADSCrossRefGoogle Scholar
  18. 18.
    V.V. Anisovich et al.: Preprint PNPI-2046, TH-19-1995.Google Scholar
  19. 19.
    K. Geiger: Phys. Rev.D46 (1992) 4965, 4986; CERN-TH.7313/94 — to be published in Phys. Rep.ADSGoogle Scholar
  20. 20.
    P.V. Ruuskanen: Z. Phys.C38 (1988) 219; Acta Phys. Pol.B18 (1987) 551.ADSGoogle Scholar
  21. 21.
    Ya. B. Zeldovich, I. Yu. Kobzarev, L.B. Okun: JETP67 (1974) 3.Google Scholar
  22. 22.
    S. Gavin, A. Gocksch, R.D. Pisarski: Phys. Rev. Lett.72 (1994) 2143.ADSCrossRefGoogle Scholar
  23. 23.
    S. Gavin, B. Müller: Phys. Lett.B329 (1994) 486.ADSCrossRefGoogle Scholar
  24. 24.
    Ian. I. Kogan: JETP Lett.59 (1994) 307.ADSGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. A. Anselm
    • 1
  • M. G. Ryskin
    • 1
  • A. G. Shuvaev
    • 1
  1. 1.Petersburg Nuclear Physics InstituteGatchina, St. PetersburgRussia

Personalised recommendations