Advertisement

Zeitschrift für Physik A Hadrons and Nuclei

, Volume 354, Issue 3, pp 293–299 | Cite as

Quantum decay rate of a nonlinear dissipative system with fission-like potential nearT c

  • Jing-Dong Bao
  • Yi-Zhong Zhuo
  • Xi-Zhen Wu
Article

Abstract

We use a thermodynamic scheme (imaginary free energy method) in terms of the path integral technique to study the quantum decay rates of a metastable state system coupled to a heat bath in the crossover temperature (T c) region. In this region the transition between thermally activated decay and tunneling occurs. A nonlinear coupling form factor is used to overcome the divergent integral in the partition function nearT c. The decay rate formula based on the steepest descent approximation has been improved. A method is developed to calculate the real and imaginary parts of the partition function which combines a random walk method with fast-Fourier transform Monte-Carlo evaluation. For a nonlinear dissipative system with a damping correlation kernel of exponential form, the accurate numerical calculations are presented. The effects of nonlinear and frequency-dependent damping on the rate are shown.

PACS

25.85.-w 05.40.+j 03.65.Db 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grabert, H., Olschowski, P., Weiss, U.: Phys. Rev. B36, 1931 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    Hänggi, P., Talkner, P., Borkovec, M.: Rev. Mod. Phys. 62, 251 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    Hänggi, P.: Z. Phys. B 68, 181 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Weiss, U.: Quantum Dissipative Systems (World Scientific), Singapore (1993), Part IIICrossRefzbMATHGoogle Scholar
  5. 5.
    Langer, J.S.: Ann. Phys (NY) 41, 108 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    Grabert, H., Olschowski, P., Weiss, U.: Phys. Rev. B32, 3348 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    Grabert, H., Olschowski, P., Weiss, U.: Z. Phys. B68, 193 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    Grabert, H., Weiss, U.: Phys. Rev. Lett. 52, 2193 (1984)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Grabert, H., Weiss, U.: Phys. Rev. Lett. 53, 1787 (1984)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Takigawa, N., Abe, M.: Phys. Rev. C41, 2451 (1990)ADSGoogle Scholar
  11. 11.
    Fröbrich, P., Tillack, G.-R.: Nucl. Phys. A540, 353 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    Bao, J.D., Zhuo, Y.Z. Wu, X.Z: Z. Phys. A347, 217 (1994)ADSGoogle Scholar
  13. 13.
    Bao, J.D., Zhuo, Y.Z. Wu, X.Z.: Phys. Lett. B327, 1 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    Feynman, R.P.: Statistical Mechanics (Benjamin London, 1982) pp. 81Google Scholar
  15. 15.
    Grabert, H.: The role of dissipation of quantum tunneling, In: Tunneling, Jortner, J., Pullman, B. (eds.), pp. 165–182. Boston: Reidel 1986CrossRefGoogle Scholar
  16. 16.
    Affleck, I.: Phys Rev. Lett 46, 388 (1981)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Miller, W.H., Schwartz, S.D., Tromp, J.W.: J. Chem. Phys. 79, 4889 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions (U.S. Government Printing Office, Washington, DC, 1964), p. 933zbMATHGoogle Scholar
  19. 19.
    Janke, W., Kleinert, H.: Chem. Phys. Lett. 137, 162 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    Janke, W.: In Path Integrals form meV to MeV, ed. by Sayakanit, V. et al. (World Scientific, Singapore 1990), p. 355Google Scholar
  21. 21.
    Straus, J.B., Voth, G.A.: J. Chem. Phys. 96, 5460 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    Straus, J.B., Llotent, M.G. Voth, G.A.: J. Chem. Phys. 98, 4082 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    Caldeira, A.O., Leggett, A.J.: Ann. Phys. (NY) 149, 374 (1983)ADSCrossRefGoogle Scholar
  24. 24.
    Haynes, G.R., Voth, G.A.: Phys. Rev. A46, 2143 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    Chang, L.-D., Chakravarty, S.: Phys. Rev. B29, 130 (1984)ADSCrossRefGoogle Scholar
  26. 26.
    Benderskii, V.A. et al.: Phys. Rep. 233, 198 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    Benderskii, V.A., Goldanskii, V.A., Makarov, D.E.: Chem. Phys. 159, 29 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    Benderskii, V.A., Makarov, D.E.: Chem. Phys. 170, 275 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Jing-Dong Bao
    • 1
    • 2
  • Yi-Zhong Zhuo
    • 3
    • 4
  • Xi-Zhen Wu
    • 3
  1. 1.CCAST (World Laboratory)BeijingPeople’s Republic of China
  2. 2.Beijing Institute of MeteorologyBeijingPeople’s Republic of China
  3. 3.Institute of Atomic EnergyBeijingPeople’s Republic of China
  4. 4.Institute of Theoretical PhysicsAcademia SinicaBeijingPeople’s Republic of China

Personalised recommendations