Skip to main content
Log in

Receptor-receptor interactions as an integrative mechanism in nerve cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Several lines of evidence indicate that interactions among transmission lines can take place at the level of the cell membrane via interactions among macromolecules, integral or associated to the cell membrane, involved in signal recognition and transduction. The present view will focus on this last subject, i.e., on the interactions between receptors for chemical signals at the level of the neuronal membrane (receptor-receptor interaction). By receptor-receptor interaction we mean that a neurotransmitter or modulator, by binding to its receptor, modifies the characteristics of the receptor for another transmitter or modulator. Four types of interactions among transmission lines may be considered, but mainly intramembrane receptor-receptor interactions have been dealt with in this article, exemplified by the heteroregulation of D2 receptors via neuropeptide receptors and A2 receptors. The role of receptor-receptor interactions in the integration of signals is discussed, especially in terms of filtration of incoming signals, of integration of coincident signals, and of neuronal plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi D. K., Kalivas P. W., and Schenk J. O. (1990) Neurotensin binding to dopamine.J. Neurochem. 54, 1321–1328.

    Article  PubMed  CAS  Google Scholar 

  • Agnati L. F., Fuxe K., Zini I., Lenzi P., and Hökfelt T. (1980) Aspects on receptor regulation and isoreceptor identification.Med. Biol. 58, 182–187.

    PubMed  CAS  Google Scholar 

  • Agnati L. F., Fuxe K., Zoli M., Rondanini C., and Ögren S.-O. (1982) New vistas on synaptic plasticity: mosaic hypothesis on the engram.Med. Biol. 60, 183–190.

    PubMed  CAS  Google Scholar 

  • Agnati L. F. and Fuxe K. (1983) Subcortical limbic [3H]N-propylnorapomorphine binding sites are markedly modulated by cholecystokinin-8 in vitro.Biosci. Rep. 3, 1101–1105.

    Article  PubMed  CAS  Google Scholar 

  • Agnati L. F., Fuxe K., Benfenati F., Celani M. F., Battistini N., Mutt V., Cavicchioli L., Galli G., and Hökfelt T. (1983a) Differential modulation by CCK-8 and CCK-4 of [3H]spiperone binding sites linked to dopamine and 5-hydroxytryptamine receptors in the brain of the rat.Neurosci. Lett. 35, 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Agnati L. F., Celani M. F., and Fuxe K. (1983b) Cholecystokinin peptides in vitro modulate the characteristics of striatal [3H]N-propylnorapomorphine binding sites.Acta Physiol. Scand. 118, 79–81.

    PubMed  CAS  Google Scholar 

  • Agnati L. F., Fuxe K., Benfenati F., and Battistini N. (1983c) Neurotensin in vitro markedly reduces the affinity in subcortical limbic [3H]N-propylnorapomorphine binding sites.Acta Physiol. Scand. 119, 459–461.

    PubMed  CAS  Google Scholar 

  • Agnati L. F., Fuxe K., Benfenati F., Zini I., and Hökfelt T. (1983d) On the functional role of coexistence of 5-HT and substance P in bulbospinal 5-HT neurons. Substance P reduces affinity and increases density of [3H]5-HT binding sites.Acta Physiol. Scand. 117, 299–301.

    PubMed  CAS  Google Scholar 

  • Agnati L. F., Fuxe K., Benfenati F., Battistini N., Härfstrand A., Tatemoto K., Hökfelt T., and Mutt V. (1983e) Neuropeptide Y in vitro selectively increases the number of a2-adrenergic binding sites in membranes of the medulla oblongata of the rat.Acta Physiol. Scand. 118, 293–295.

    Article  PubMed  CAS  Google Scholar 

  • Agnati L. F., Fuxe K., Benfenati F., Battistini N., Zini I., Camurri M., and Hökfelt T. (1984) Postsynaptic effects of neuropeptide comodulators at central monoamine synapses, inNeurology and Neurobiology, vol. 8B: Cathecolamines, Part B: Neuropharmacology and Central Nervous System Theoretical Aspects (Usdin E., Carlsson A., Dahlström A., and Engel J., eds.), Liss, New York, p. 191.

    Google Scholar 

  • Agnati L. F., Fuxe K., Battistini N., Giardino L., Benfenati F., Martire M., and Ruggeri M. (1985a) Further evidence for the existence of interactions between receptors for dopamine and neurotensin. Dopamine reduces the affinity and increasses the number of [3H]neurotensin binding sites in the subcortical limbic forebrain in the rat.Acta Physiol. Scand. 124, 125–128.

    PubMed  CAS  Google Scholar 

  • Agnati L. F., Fuxe K., Giardino L., Calza L., Calza L., Zoli M., Battistini N., Benfenati F., Vanderhaeghen J. J., Guidolin D., Ruggeri M., and Goldstein M. (1985b) Evidence for cholecystokinin-dopamine receptor interactions in the central nervous system of the adult and old rat.Ann. NY Acad. Sci. 448, 315–333.

    Article  PubMed  CAS  Google Scholar 

  • Agnati L. F., Fuxe K., Zoli M., Merlo P., Benfenati F., Zini I., and Goldstein M. (1986) Aspects on the information handling by the central nervous system: focus on cotransmission in the aged brain, inProgress in Brain Research vol. 68, Hökfelt T., Fuxe K., and Pernow B., eds.), Elsevier, Amsterdam, pp. 291–301.

    Google Scholar 

  • Agnati L. F., Fuxe K., Merlo-Pich E., Zoli M., Zini I., Benfenati F., Härfstrand A., and Goldstein M. (1987) Aspects on the integrative capabilities of the central nervous system: evidence for “volume transmission” and its possible relevance for receptor-receptor interactions inReceptor-Receptor Interactions (Fuxe K. and Agnati L. F., eds.), Macmillan, London, pp. 236–249.

    Google Scholar 

  • Agnati L. F., Zoli M., Merlo-Pich E., Ruggeri M., and Fuxe K. (1988) The emerging complexity of the brain. Limits of brain-computer analogy, inTraffic Engineering for ISDN Design and Planning (Bonatti M. and Decina M., eds.), Elsevier, Amsterdam, pp. 209–230.

    Google Scholar 

  • Agnati L. F., Zoli M., Pich E. M., Benfenati F., Grimaldi R., Zini I., Toffano G., and Fuxe K. (1989) NPY receptors and their interactions with other transmitter systems, inNeuropeptide Y (Mutt V., Fuxe K., Hökfelt T., and Lundberg J., eds.), Raven, New York, pp. 103–114.

    Google Scholar 

  • Agnati L. F., Zoli M., Merlo-Pich E., Benfenati F., and Fuxe K. (1990) Aspects of neural plasticity in the central nervous system. VII. Theoretical aspects of brain communication and computation.Neurochem. Int. 16, 478–500.

    Google Scholar 

  • Agnati L. F., Bjelke B., and Fuxe K. (1992) Volume transmission in the brain.Am. Sci. 80, 362–373.

    Google Scholar 

  • Aguirre J. A., Fuxe K., Agnati L. F., and von Euler G. (1990) Centrally injected neuropeptide Y (13–36) produces vasopressor effects and antagonizes the vasodepressor action of neuropeptide Y (1–36) in the awake male rat.Neurosci. Lett. 118, 5–8.

    Article  PubMed  CAS  Google Scholar 

  • Aguirre J. A., Fuxe K., Hedlund P., Narváez J. A. Cintra A., Rosén L., and Fuxe K. (1991) Neuropeptide Y/angiotensin II interactions in central cardiovascular regulation of the rat.Brain Res. 566, 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Alexander S. P. and Reddington M. (1989) The cellular localization of adenosine receptors in rat neostriatum.Neuroscience 28, 645–651.

    Article  PubMed  CAS  Google Scholar 

  • Ariéns E. J., Beld A. J., Rodrigues de Miranda J. F., and Simonis A. M. (1980) The pharmacon-receptor-effector concept. A basis for understanding the transmission information in biological systems, inThe Receptors: A Comprehensive Treatise, vol. 1 (O'Brien R. D., ed.), Plenum, New York, pp. 33–91.

    Google Scholar 

  • Assaf S. Y. and Chung S. (1984) Release of endogenous Zn2+ from brain tissue during activity.Nature 308, 734–736.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J., Burch R. M., and Jelsema C. L. (1987) Receptor mediated activation of phospholipase A2: arachidonic acid and its metabolites as second messengers inReceptor-Receptor Interactions (Fuxe K. and Agnati L. F., eds.), Macmillan, London, pp. 298–307.

    Google Scholar 

  • Barbaccia M. L., Costa E., and Guidotti A. (1988) Endogenous ligands for high-affinity recognition sites of psychotropic drugs.Ann. Rev. Pharmacol. Toxicol. 28, 451–476.

    Article  CAS  Google Scholar 

  • Barraco R. A., Aggarwal A. K., Phillis J. W., Boron M. A., and Wu P. (1984) Dissociation of the locomotor and hypotensive effects of adenosine analogues in the rat.Neurosci. Lett. 48, 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Bean A. J., Adrian T. E., Modline I. M., and Roth R. H. (1989) Storage of dopamine and neurotensin in colocalized and noncolocalized neuronal populations.J. Pharmacol. Exp. Ther. 249, 681–684.

    PubMed  CAS  Google Scholar 

  • Bear M. F. and Kirkwood A. (1993) Neocortical longterm potentiation.Curr. Opin. Neurobiol. 3, 197–202.

    Article  PubMed  CAS  Google Scholar 

  • Benovic J. L., Regan J. W., Caron M. G., and Lefkowitz R. J. (1987a) Agonist-dependent phosphorylation of the a2-adrenergic receptor by the b-adrenergic receptor kinase.J. Biol. Chem. 262, 17,251–17,253.

    CAS  Google Scholar 

  • Benovic J. L., Staniszewski C., Cerione R. A., Codina J., Lefkowitz R. J., and Caron M. G. (1987b) The mammalian beta-adrenergic receptor: structural and functional characterization of the carbohydrate moiety.J. Recept. Res. 7, 257–281.

    PubMed  CAS  Google Scholar 

  • Benovic J. A., Bechtel P. J., and Krebs E. G. (1988) Regulation of adenylyl cyclase-coupled b-adrenergic receptor.Ann. Rev. Cell Biol. 4, 405–428.

    PubMed  CAS  Google Scholar 

  • Benveniste M., Clements J., and Mayer M. (1990) A kinetic analysis of the modulation of NMDA receptors by clycine in mouse cultured hippocampal neurons.J. Physiol. 428, 333–357.

    PubMed  CAS  Google Scholar 

  • Bertorello A. M., Hopfield J. F., Aperia A., and Greengard P. (1990) Inhibition of dopamine of (NA+K+) ATPase activity in neostriatal neurons through D1 and D2 dopamine synergism.Nature 347, 386–388.

    Article  PubMed  CAS  Google Scholar 

  • Boissier J. R. and Simon P. (1965) Action de la caffeine sur la motilitée spontanée de la souris.Arch. Int. Pharmacodyn. Ther. 158, 212–221.

    PubMed  CAS  Google Scholar 

  • Bormann J., Flugge G., and Fuchs E. (1989) Effect of atrial natriuretic factor (ANF) on nicotinic acetylcholine receptor channels in bovine chromaffin cells.Pflugers Arch. Eur. J. Physiol. 414, 11–14.

    Article  CAS  Google Scholar 

  • Bourne H. R. and Nicoll R. (1993) Molecular machines integrate coincident synaptic signals.Cell 72/Neuron 10 (Suppl.), 65–75.

    Article  Google Scholar 

  • Bouthenet M. L., Souil E., Martres M., Sokolof P., Giros B., and Schwartz J. C. (1992) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor.Brain Res. 564, 203–219.

    Article  Google Scholar 

  • Boyd N. D. and Leeman S. E. (1987) Multiple actions of substance P that regulate the functional properties of acetylcholine receptors of clonal rat PC12 cells.J. Physiol. 389, 69–97.

    PubMed  CAS  Google Scholar 

  • Boyson S. J., McConigle P., and Scatton P. B. (1986) Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain.J. Neurosci. 6, 3177–3182.

    PubMed  CAS  Google Scholar 

  • Brown A. M. and Birnbaumer L. (1990) Ionic channels and their regulation by G protein subunits.Ann. Rev. Physiol. 52, 197–213.

    Article  CAS  Google Scholar 

  • Brown S. J., Gill R., Evenden J. I., Iversen S. D., and Richardson P. J. (1991) Striatal A2 receptor regulates apomorphine-induced tuning in rats with unilateral dopamine denervation.Psychopharmacology 103, 78–82.

    Article  PubMed  CAS  Google Scholar 

  • Bruns R. F., Lu G. H., and Pugsley T. A. (1986) Characterization of the A2 adenosine receptor labeled by3H-NECA in rat striatal membranes.Mol. Pharmacol. 29, 331–346.

    PubMed  CAS  Google Scholar 

  • Bruns R. F., Davis R. E., Ninteman F. W., Poschel B.P.H., Wiley J. N., and Hefner T. G. (1988) Adenosine antagonists as pharmacological tools inAdenosine and Adenine Nucleotides: Physiology and Pharmacology (Paton D. M., ed.), Taylor and Francis, Basingstoke, UK, pp. 39–49.

    Google Scholar 

  • Bunzow J. R., Van Tol H. H. M., Grandy D. K., Albert P., Salón J., Christie M. C., Machida C. A., Neve K. A., and Civelli O. (1988) Cloning and expression of a rat D2 dopamine receptor cDNA.Nature 336, 783–787.

    Article  PubMed  CAS  Google Scholar 

  • Cain S. T., Abramson M., and Nemeroff C. B. (1988) Neurotensin stimulates the phosphorylation of caudate nucleus synaptosomal proteins.Ann. NY Acad. Sci. 537, 488–490.

    Article  Google Scholar 

  • Changeux J. P. (1990) Functional architecture and dynamic of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel, inFidia Research Foundation Neuroscience Award Lectures (Changeux J.-P., Llinás R. R., Purves D., and Bloom F. E., eds.), Raven, New York, pp. 21–168.

    Google Scholar 

  • Clagett-Dame M. and McKelvy J. F. (1989) N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity.Arch. Biochem. Biophys. 274, 145–154.

    Article  PubMed  CAS  Google Scholar 

  • Clark, D. and White F. J. (1987) D1 dopamine receptor—the search for a function: a critical evaluation of the D1/D2 dopamine receptor classification and functional implications.Synapse 1, 347–388.

    Article  PubMed  CAS  Google Scholar 

  • Coffin V. L. and Carney J. M. (1986) Effects of selected analogs of adenosine on schedule controlled behavior in rats.Neuropharmacology 25, 1141–1147.

    Article  PubMed  CAS  Google Scholar 

  • Colley P. A. and Routtenberg A. (1993) Long-term potentiation as synaptic dialogue.Brain Res. Rev. 18, 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Conn P. M., Rogers D. C., Stewart J. M., Niedel J., and Sheffield T. (1982) Conversion of a gonadotropin-releasing hormone antagonist to an agonist.Nature 296, 653–655.

    Article  PubMed  CAS  Google Scholar 

  • Convents A., De Backer J. P., Van Driessche E., Convents, D., Beeckmans, S., and Vauquelin G. (1988) Glycoprotein nature of alpha 2-adrenergic receptors labeled with p-azido:3H: clonidine in calf retina membranes.FEBS Lett. 234, 480–484.

    Article  PubMed  CAS  Google Scholar 

  • Costa E., Guidotti A., and Mao C. C. (1975) Evidence for involvement of GABA in the action of benzodiazepines: studies on rat cerebellum inMechanism of Action of Benzodiazepines (Costa E. and Greengard P., eds.), Raven, New York, pp. 113–130.

    Google Scholar 

  • Cote T. E., Felder R., Kebabian J. W., Sekura R. D., Reisine T., and Affolter H.-U. (1986) D-2 dopamine receptor mediated inhibition of proopiomelanocortin synthesis in rat intermediate lobe.J. Biol. Chem. 261, 4555–4561.

    PubMed  CAS  Google Scholar 

  • Crawley J. N. (1989) Microinjection of cholecystokinin into the rat ventral tegmental area potentiates dopamine-induced hypolocomotion.Synapse 3, 346–355.

    Article  PubMed  CAS  Google Scholar 

  • Creese I., Burt D. R., and Snyder S. H. (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioural supersensitivity.Science 197, 596–598.

    Article  PubMed  CAS  Google Scholar 

  • D'Angelo E., Rossi P., and Garthwaite J. (1990) Dualcomponent NMDA receptor currents at a single central synapse.Nature 346, 467–470.

    Article  PubMed  Google Scholar 

  • Daly J. W., Butts-Lamb P., and Padgett W. (1983) Subclasses of adenosine receptors in the central nervous system. Interactions with caffeine and related methylxanthines.Cell. Mol. Neurobiol. 1, 69–80.

    Article  Google Scholar 

  • Danysz W., Fadda E., Wroblewski J. T., and Costa E. (1989) Different modes of action of 3-amino-1-hydroxy-2-pyrrolidone (HA-966) and 7-chlorokynurenic acid in the modulation of NMDA-sensitive glutamate receptors.Mol. Pharmacol. 36, 912–916.

    PubMed  CAS  Google Scholar 

  • Desiderio M. A., Zini I., Davalli P., Zoli M., Corti A., Fuxe K., and Agnati L. F. (1988) Polyamines, ornithine decarboxylase, and diamine oxidase in the substantia nigra and striatum of the male rat after hemitransection.J. Neurochem. 51, 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Ding X. Z. and Mocchetti I. (1992) Dopaminergic regulation of cholecystokinin mRNA content in rat striatum.Mol. Brain Res. 12, 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Dobner P. R., Barber D. L., Villa-Komaroff, L., and McKiernan C. (1987) Cloning and sequence analysis of cDNA for the canine neurotensin/neuromedin N precursor.Proc. Natl. Acad. Sci. USA 84, 3516–3520.

    Article  PubMed  CAS  Google Scholar 

  • Dumbrill-Ross A. and Seeman P. (1984) Dopamine receptor elevation by cholecystokinin.Peptides 5, 1207–1212.

    Article  Google Scholar 

  • Dunwiddie T. V. (1985) The physiological role of adenosine in the central nervous system.Int. Rev. Neurobiol. 27, 63–139.

    PubMed  CAS  Google Scholar 

  • Durcan M. J. and Morgan D. F. (1989a) Evidence for adenosine A2 receptor involvement in the hypomobility effects of adenosine analogues in mice.Eur. J. Pharmacol. 168, 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Durcan M. J. and Morgan D. F. (1989b) NECA-induced hypomotility in mice: evidence for a predominantly central site of action.Pharmacol. Biochem. Behav. 32, 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Elazar Z. and Fuchs S. (1991) Phosphorylation by cAMP-dependent protein kinase modulates agonist binding to the D2 dopamine receptor.J. Neurochem. 56, 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Erinoff L. and Snoddgrass S. R. (1986) Effects of adult or neonatal treatment with 6-hydroxydopamine or 5,7 dihydroxytryptamine on locomotor activity monoamine levels and response to caffeine.Pharmacol. Biochem. Behav. 24, 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  • Federman A. D., Conklin B. R., Reed R. R., and Bourne H. R. (1992) Hormonal stimulation of adenylyl cyclase through Gi-protein beta gamma subunits.Nature 356, 159–161. (1991a) Postsynaptic dopamine/adenosine interaction: I. Adenosine analogues inhibit a D2 mediated behaviour in short-term reserpinized mice.Eur. J. Pharmacol. 192, 30–35.

    Article  PubMed  CAS  Google Scholar 

  • Ferré S., Herrera-Marschitz M., Gabrowska-Andén M., Casas M., Ungerstedt U., and Andén N.-E. (1991b) Postsynaptic dopamine/adeonosine interaction: II. Dopamine agonism and adenosine antagonism of methylxanthines in short-term reserpinized mice.Eur. J. Pharmacol. 192, 36–42.

    Google Scholar 

  • Ferré S., Rubio A., and Fuxe K. (1991c) Stimulation of adenosine A2 receptors induces catalepsy.Neurosci. Lett. 130, 162–164.

    Article  PubMed  Google Scholar 

  • Ferré S., von Euler G., Johansson B., Fredholm B. B., and Fuxe K. (1991d) Stimulation of adenosine A2a receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes.Proc. Natl. Acad. Sci. USA 88, 7238–7241.

    Article  PubMed  Google Scholar 

  • Ferré S. and Fuxe K. (1992) Dopamine denervation leads to an increase in the membrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum.Brain Res. 594, 124–130.

    Article  PubMed  Google Scholar 

  • Ferré S., Fuxe K., von Euler G., Johansson B., and Fredholm B. (1992) Adenosine-dopamine interactions in the brain.Neuroscience 51, 501–512.

    Article  PubMed  Google Scholar 

  • Ferré S., Snaprud P., and Fuxe K. (1993) Opposing actions of an adenosine A2 agonist and a GTP analogue on the regulation of dopamine D2 receptors in rat neostriatal membranes.Eur. J. Pharmacol. 244, 311–315.

    Article  PubMed  Google Scholar 

  • Findlay J. and Eliopoulos E. (1990) Three-dimensional modelling of G protein-linked receptors.Trends Pharmacol. Sci. 11, 492–498.

    Article  PubMed  CAS  Google Scholar 

  • Fink, J. S., Weaver D. R., Rivkees S. A., Peterfreund R. A., Pollack A., Adler E. M. and Reppert S. M. (1992) Molecular cloning of the rat A2 adenosine receptor: selective coexpression with D2 dopamine receptors in rat striatum.Mol. Brain Res. 14, 186–195.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine B., Klarsfeld A., Hökfelt T. and Changeux J. P. (1986) Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes.Neurosci. Lett. 71, 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine B., Klarsfeld A., and Changeux J. P. (1987) Calcitonin-gene-related peptide and muscle activity regulate acetylcholine receptor a-subunit mRNA levels by distinct intracellular pathways.J. Cell Biol. 105, 1337–1342.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm B. B., Fuxe, K., and Agnati L. F. (1976) Effect of some phosphodiesterase inhibitors on

  • Fredholm B. B. and Hedqvist P. (1979) Modulation of neurotransmission by purine nucleotides and nucleosides.Biochem. Pharmacol. 29, 1635–1643.

    Article  Google Scholar 

  • Fredholm B. B., Herrera-Marschitz M., Jonzon B., Lindström K., and Ungerstedt U. (1983) On the mechanism by which methylxanthines enhance apomorphine induced rotation behaviour in the rat.Pharmacol. Biochem. Behav. 19, 535–541.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm B. B. (1985) Adenosine and central cathecholamine neurotransmission, inAdenosine: Receptors and Modulation of Cell Function (Stefanovich V., Rudolphi K., and Schubert P., eds.), IRL, Oxford, pp. 91–104.

    Google Scholar 

  • Fredholm B. B. (1991) Diversity in receptor signalling: cellular individuality and the search for selective drugs.J. Int. Med. 229, 391–406.

    CAS  Google Scholar 

  • Freidinger R. M., Bock M. G., DiPardo R. M., Evans B. E., Rittle K. E., Whitter W. L., Veber D. F., Anderson P. S., Chang R. S. L., and Lotti V. J. (1990) Development of selective nonpeptide CCK-A and CCK-B/gastrin receptor antagonists, inThe Neuropeptide Cholecystokinin (CCK) (Hughes J., Dockray G., and Woodruff G., eds.). Wiley, New York, pp. 123–132.

    Google Scholar 

  • Fujita N., Nakahiro M., Fukush I., Sato K., and Yoshida H. (1985) Effects of pertussis toxin on D2 dopamine receptors in rat striatum: evidence for coupling of Ni regulatory protein with D2-receptor.Brain Res. 333, 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K. and Ungerstedt U. (1974) Action of caffeine and theophyllamine on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with dopa and dopamine receptor agonists.Med. Biol. 52, 48–54.

    PubMed  CAS  Google Scholar 

  • Fuxe K., Agnati, L. F., Benfenati F., Cimmino M., Algeri S., and Hökfelt T. (1981a) Modulation by cholecystokinins of [3H]spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites.Acta Physiol. Scand. 113, 567–569.

    PubMed  CAS  Google Scholar 

  • Fuxe K., Agnati L. F., Köhler C., Kuonen D., Ögren S.-O. Andersson K., and Hökfelt T. (1981b) Characterization of normal and supersensitive dopamine receptors: effects of ergot drugs and neuropeptides.J. Neural. Transm. 51, 3–37.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K., Agnati L. F., and Celani M. F. (1983a) Evidence for interactions between striatal cholecystokinin and glutamate receptors. CCK-8 in vitro produces a marked downregulation of3H-glutamate binding sites in striatal membranes.Acta Physiol. Scand. 118, 75–77.

    PubMed  CAS  Google Scholar 

  • Fuxe K., Agnati L. F., and Celani M. F. (1983b) Evidence for interactions between3H-glutamate and3H-kainic acid binding sites in rat striatal membranes. Possible relevance for kainic acid neurotoxicity.Neurosci. Lett. 35, 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K., Agnati L. F., Benfenati F., Celani M. F., Zini I., Zoli M., and Mutt V. (1983c) Evidence for the existence of receptor-receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuroleptics.J. Neural Transm. 18, 165–179.

    CAS  Google Scholar 

  • Fuxe K., Agnati L. F., Andersson K., Eneroth P., Härfstrand A., Goldstein M., and Zoli M. (1984a) Studies on neurotensin-catecholamine interactions in the hypothalamus and in the forebrain of the male rat.Neurochem. Int. 6, 737–750.

    Article  CAS  Google Scholar 

  • Fuxe K., Celani M. F., Martire M., Zini I., Zoli M., and Agnati L. F. (1984b) 1-Glutamate reduces the affinity of 3H-N-propylnorapomorphine binding sites in striatal membranes.Eur. J. Pharmacol. 100, 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K. and Agnati L. F. (1985) Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses.Med. Res. Rev. 5, 441–482.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K., Agnati L. F., Martire M., Neumayer A., Benfenati F., and Frey P. (1986) Studies of neurotensin-dopamine receptor interactions in striatal membranes of the male rat. The influence of 6-hydroxydopamine-induced dopamine receptor supersensitivity.Acta Physiol. Scand. 126, 147–149.

    PubMed  CAS  Google Scholar 

  • Fuxe K. and Agnati L. F. (1987)Receptor-Receptor Interactions. A New Intramembrane Integrative Mechanism. McMillan, London.

    Google Scholar 

  • Fuxe K., von Euler G., Agnati L. F., and Ögren S.-O. (1988a) Galanin selectively modulates 5-hydroxytryptamine 1A receptors in the rat ventral limbic cortex.Neurosci. Lett. 85, 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K., von Euler G., and Agnati L. F. (1988b) Angiotensin II reduces the affinity of [3H]paraaminoclonidine binding sites in membrane preparations from the rat dorsomedial medulla oblongata.Acta Physiol. Scand. 134, 317, 318.

    PubMed  CAS  Google Scholar 

  • Fuxe K., Härfstrand A., Agnati L. F., von Euler G., Svensson T., and Fredholm B. (1989a) On the role of NPY in central cardiovascular regulation, inNeuropeptide Y (Mutt V., ed.), Raven, New York, pp. 201–214.

    Google Scholar 

  • Fuxe K., Agnati L. F., von Euler G., Benfenati F., Zoli M., Härfstrand A., and Fredholm B. (1989b) Receptor-receptor interactions, and development of psychoactive drugs, inNeurochemical Pharmacology (Costa E., ed.), Raven, New York, pp. 211–227.

    Google Scholar 

  • Fuxe K., Agnati L. F., von Euler G., Benfenati F., and Tanganelli S. (1990) Modulation of dopamine D1 and D2 transmission lines in the central nervous system, inCurrent Aspects of the Neurosciences (Osborne N. N., ed.), MacMillan, London, pp. 203–243.

    Google Scholar 

  • Fuxe K. and Agnati L. (1991) Two principal modes of electrochemical communication in the brain: volume versus wiring transmission, inAdvances in Neurosciences, Volume Transmission in the Brain. Novel Mechanisms for Neural Transmission (Fuxe K. and Agnati L., eds.), Raven, New York, pp. 1–9.

    Google Scholar 

  • Fuxe K., O'Connor W. T., Antonelli T., Osborne P. G., Tanganelli S., Agnati L. F., and Ungerstedt U. (1992a) Evidence for a substrate of neuronal plasticity based on pre- and postsynaptic neurotensin-dopamine receptor interactions in the neostriatum.Proc. Natl. Acad. Sci. USA 89, 5591–5595.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K., von Euler G., Agnati L. F., Pich E. M., O'Connor W. T., Tanganelli S., Li X. M., Tinner B., Cintra A., Carani C., and Benfenati F. (1992b) Intramembrane interactions between neurotensin receptors and dopamine D2 receptors as a major mechanism for the neuroleptic-like action of neurotensin.Ann. NY Acad. Sci., in press.

  • Fuxe K., Agnati L. F., von Euler G., Tanganelli S., O'Connor W. T., Ferré S., Hedlund P., and Zoli M. (1992c) Neuropeptide, excitatory amino acid and adenosine A2 receptors regulate D2 receptors via intramembrane receptor-receptor interactions. Relevance for Parkinson's disease and schizophrenia.Neurochem. Int. 20(Suppl.), 215S-224S.

    Article  PubMed  CAS  Google Scholar 

  • Geraghty D. P., Livett B. G., and Burcher E. (1990) A novel substance P binding site in bovine adrenal medulla.Neurosci. Lett. 112, 276–281.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen C. R. (1992) D1 and D2 dopamine receptor regulation of striatonigral and striatopallidal neurons.Sem. Neurosci. 4, 109–118.

    Article  Google Scholar 

  • Gilles C., Lotstra F., and Vanderhaeghen J.-J. (1983) CCK nerve terrninals in rat striatum and limbic areas originate partly in the brainstem and partly in telencephalic areas.Life Sci. 32, 1683–1690.

    Article  PubMed  CAS  Google Scholar 

  • Gilman A. G. (1987) G proteins: transducers of receptor-generated signals.Ann. Rev. Biochem. 56, 615–627.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M., Pinnock R. D., Downes C. P., Mantyh P. W., and Emson P. C. (1984a) Neurotensin stimulates inositol phospholipid hydrolysis in rat brain slices.Brain Res. 323, 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M., Pittaway K., Williams B. J., and Emson P. C. (1984b) Specific binding of tritiated neorotensin to rat brain membranes: characterization and regional distribution.Brain Res. 304, 71–81.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel A. M. (1990) Neurotransmitters and neuromodulators in the basal ganglia.Trends Neurosci. 13, 244–254.

    Article  PubMed  CAS  Google Scholar 

  • Green R. G., Proudfit H. K., and Yeung S.-M. H. (1982) Modulation of striatal dopaminergic function by local injection of 5′-N-ethylcarboxamide adenosine.Science 218, 58–61.

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi R., Zini I., Zoli M., Merlo Pich E., Ferraguti F., Davalli P., Toffano A., Fuxe K., and Agnati L. F. (1991) Neuron-astroglia interactions in physiopathological conditions: possible role of volume transmission, inVolume Transmission in the Brain: Novel Mechanisms for Neural Transmission (Fuxe K. and Agnati L. F., eds.), Raven, New York, pp. 247–256.

    Google Scholar 

  • Guidotti A., Toffano G., and Costa E. (1978) An endogenous protein modulates the affinity of GABA and B2 receptors in rat brain.Nature 257, 553–555.

    Article  Google Scholar 

  • Gustafsson B., Wigström H., Abraham W. C., and Huang Y.-Y. (1987) Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials.J. Neurosci. 7, 774–780.

    PubMed  CAS  Google Scholar 

  • Haefely W., Kulcsár A., Möhler H., Pieri L., Polc P., and Schaffner R. (1975) Possible involvement of GABA in the central actions of benzodiazepines, inMechanism of Action of Benzodiazepines (Costa E. and Greengard P., eds.), Raven, New York, pp. 131–151.

    Google Scholar 

  • Haefely W. (1992) Ligands of the GABAA receptor-associated benzodiazepine receptor.Neurosci. Facts 3, 69, 70.

    Google Scholar 

  • Halpain S., Girault J. A., and Greengard P. (1990) Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices.Nature 343, 369–372.

    Article  PubMed  CAS  Google Scholar 

  • Harms H. H., Warden G., and Mulder A. H. (1979) Effects of adenosine on depolarization-induced release of various radiolabelled neurotransmitters from slices of rat corpus striatum.Neuropharmacology 18, 577–580.

    Article  PubMed  CAS  Google Scholar 

  • Hebb D. O. (1949)The Organization of Behavior. Wiley, New York.

    Google Scholar 

  • Hedlund P., von Euler G., and Fuxe K. (1991a) Activation of 5-hydroxytryptamine1A receptors increases the affinity of galanin receptors in di-and telencephalic areas of the rat.Brain Res. 560, 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Hedlund P. B., Aguirre J. A., Narvaez J. A., and Fuxe K. (1991b) Centrally coinjected galanin and a 5-HT1A agonist act synergistically to produce vasodepressor responses in the rat.Eur. J. Pharmacol. 204, 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Heffner T. G., Wiley J. N., Williams A. E., Bruns R. F., Coughenour L. L., and Downs D. A. (1989) Comparison of the behavioural effects of adenosine agonists and dopamine antagonists in mice.Psychopharmacology 98, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Heidmann T. and Changeux J.-P. (1979a) Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata.Eur. J. Biochem. 94, 255–279.

    Article  PubMed  CAS  Google Scholar 

  • Heidmann T. and Changeux J.-P. (1979b) Fast kinetic studies on the allosteric interactions between acetylcholine receptor and local anesthetic binding sites.Eur. J. Biochem. 94, 281–296.

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M., Forster C., and Ungerstedt U. (1985) Rotational behaviour elicited by intracerebral injections of apomorphine and pergolide in 6-hydroxydopamine-lesioned rats. I: comparison between systemic and intrastriatal injections.Acta Physiol. Scand. 125, 519–527.

    PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M., Casas M., and Ungerstedt U. (1988) Caffeine produces contralateral rotation in rats with unilateral dopamine denervation: comparisons with apomorphine-induced responses.Psychopharmacology 94, 38–45.

    Article  PubMed  CAS  Google Scholar 

  • Hill J. A., Jr. (1992) Nicotinic receptor-associated 43K protein and progressive stabilization of the post-synaptic membrane.Mol. Neurobiol. 6, 1–17.

    PubMed  Google Scholar 

  • Hill D. R., Campbell N. J., Shaw T. M., and Woodruff G. N. (1987) Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in the rat CNS using highly selective non-peptide CCK antagonist.J. Neurosci. 7, 2967–2976.

    PubMed  CAS  Google Scholar 

  • Hille B. (1992) G protein-coupled mechanisms and nervous signaling.Neuron 9, 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Hollenberg M. D. (1991) Structure-activity relationships for transmembrane signaling: the receptor's turn.FASEB J. 5, 178–186.

    PubMed  CAS  Google Scholar 

  • Howell G. A., Welch M. G., and Fredrichson C. J. (1984) Stimulation induced uptake and release of zinc in hippocampal slices.Nature 308, 736–738.

    Article  PubMed  CAS  Google Scholar 

  • Huganir R. L. and Greengrad P. (1983) cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor.Proc. Natl. Acad. Sci. USA 80, 1130–1134.

    Article  PubMed  CAS  Google Scholar 

  • Huganir R. L., Delcour A. H., Greengard P., and Hess G. P. (1986) Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization.Nature 321, 774–776.

    Article  PubMed  CAS  Google Scholar 

  • Huganir R. L., and Greengard P. (1987) Regulation of receptor function by protein phosphorylation.Trends Pharmacol. Sci. 8, 472–477.

    Article  CAS  Google Scholar 

  • Huganir R. L., and Greengard P. (1990) Regulation of neurotransmitter receptor desensitization by protein phosphorylation.Neuron 5, 555–567.

    Article  PubMed  CAS  Google Scholar 

  • Hughes J., Boden P., Costall B., Domeney A., Kelly E., Horwell D. C., Hunter J. C., Pinnock R. D., and Woodruff G. N. (1990) Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity.Proc. Natl. Acad. Sci. USA 87, 6728–6732.

    Article  PubMed  CAS  Google Scholar 

  • Härfstrand A., Fuxe K., Agnati L., and Fredholm B. (1989) Reciprocal interactions between alpha 2-adrenoceptor agonist and neuropeptide Y binding sites in the nucleus tractus solitarius of the rat. A biochemic and autoradiographic analysis.J. Neural. Transm. 75, 83–99.

    Article  PubMed  Google Scholar 

  • Hökfelt T., Skiboll L., Rehfeld M. F., Goldstein M., Markey K., and Dann O. (1980) A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contain a cholecystokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing.Neuroscience 5, 2093–2124.

    Article  PubMed  Google Scholar 

  • Hökfelt T., Everitt B. J., Theodorsson-Norheim E., and Goldstein M. (1984) Occurrence of neurotensin-like immunoreactivity in subpopulations of hypothalamic, mesencephalic, and medullary catecholamine neurons.J. Comp. Neurol. 222, 543–559.

    Article  PubMed  Google Scholar 

  • Ito I., Tanabe S., Kohda A., and Sugiyama H. (1990) Allosteric potentiation of quisqulate receptors by a nootropic drug aniracetam.J. Physiol. 424, 533–543.

    PubMed  CAS  Google Scholar 

  • Ito M. (1991) The cellular basis of cerebellar plasticity.Curr. Opin. Neurobiol. 1, 616–620.

    Article  PubMed  CAS  Google Scholar 

  • Jarvis M. F., Jackson R. H., and Williams M. (1989) Autoradiographic characterization of high affinity adenosine A2 receptors in the rat brain.Brain Res. 484, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Jarvis M. F. and Williams M. (1991) Direct auto-radiographic localization of adenosine A2 receptors in the rat brain.Eur. J. Pharmacol. 168, 243–246.

    Article  Google Scholar 

  • Johnson J. W. and Ascher P. (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons.Nature 325, 529–531.

    Article  PubMed  CAS  Google Scholar 

  • Jolicoeur F. B., Fivest R., St. Pierre S., Gagne M. A., and Dumais M. (1985) The effects of neurotensin and [D-Tyr11]-NT on the hyperactivity induced by intra-accumbens administration of a potent dopamine receptor agonist.Neuropeptides 6, 143–156.

    Article  PubMed  CAS  Google Scholar 

  • Josselyn S. A. and Beninger R. J. (1991) Behavioural effects of intrastriatal caffeine mediated by adenosinergic modulation of dopamine.Pharmacol. Biochem. Behav. 39, 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Kalivas P. W., Nemeroff C. B., and Prange A. J., Jr. (1984) Neurotensin microinjections into the nucleus accumbens antagonizes dopamine-induced increase in locomotion and rearing.Neuroscience 11, 919–930.

    Article  PubMed  CAS  Google Scholar 

  • Kalivas P. W. (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area.Brain Res. Rev. 18, 75–113.

    Article  PubMed  CAS  Google Scholar 

  • Kemp J. A. and Priestley T. (1991) Ifenprodil blocks N-methyl-D-aspartate receptors by a two-component mechanism.Mol. Pharmacol. 39, 666–670.

    PubMed  CAS  Google Scholar 

  • Kemp J. A. and Leeson P. D. (1993) The glycine site of the NMDA receptor—five years on.Trends Pharmacol. Sci. 14, 20–25.

    Article  PubMed  CAS  Google Scholar 

  • Kessler M., Terramani T., Lynch G., and Baudry M. (1989) A glycine site associated with NMDA receptors: characterization and identification of a new class of antagonists.J. Neurochem. 52, 1319–1328.

    Article  PubMed  CAS  Google Scholar 

  • Laufer R. and Changeux J. P. (1989) Activity-dependent regulation of gene expression in muscle and neuronal cells.Mol. Neurobiol. 3, 1–53.

    PubMed  CAS  Google Scholar 

  • Le Moine C., Normand E., Guitteny A. F., Fouque B., Teoule R., and Bloch B. (1990) Dopamine receptor gene expression by enkephalin neurons in rat forebrain.Proc. Natl. Acad. Sci. USA 87, 230–234.

    Article  PubMed  Google Scholar 

  • Le Moine C., Normand E., and Bloch B. (1991) Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene.Proc. Natl. Acad. Sci. USA 88, 4205–4209.

    Article  PubMed  Google Scholar 

  • Lefkowitz R. J. and Caron M. G. (1988) Adrenergic receptors.J. Biol. Chem. 263, 4993–4996.

    PubMed  CAS  Google Scholar 

  • Legendre P. and Westbrook G. L. (1991) Purification and characterization of naturally occurring benzodiazepine receptor ligands in rat and human brain.Mol. Pharmacol. 39, 267–274.

    PubMed  CAS  Google Scholar 

  • Léna C. and Changeux J.-P. (1993) Allosteric modulations of the nicotinic acetylcholine receptor.Trends Neurosci. 16, 181–186.

    Article  PubMed  Google Scholar 

  • Li X.-M., von Euler G., Hedlund P. B., Finnman U.-B., and Fuxe K. (1993a) The C-terminal neurotensin-(8–13) fragment potently modulates rat neostriatal dopamine D2 receptors.Eur. J. Pharmacol. 234, 125–128.

    Article  PubMed  CAS  Google Scholar 

  • Li X. M., Finnman U. B., von Euler G., Hedlund P. B., and Fuxe K. (1993b) Neuromedin N is more potent than neurotensin in modulating DA D2 receptor agonist binding in the rat neostriatum.Neurosci. Lett., in press.

  • Li X. M., Hedlund P. B., von Euler G., and Fuxe K. (1993c) Cholecystokinin B receptors and D1 receptors interact in the regulation of striatal D2 receptors.J. Neurosci., submitted.

  • Libert F., Parmentier M., Lefort A., Dinsart C., Van Sande J., Maenhaut C., Simons M.-J., Dumont J. E., and Vasart G. (1989) Selective amplification and cloning of four new members of the G-protein-coupled receptor family.Science 244, 569–572.

    Article  PubMed  CAS  Google Scholar 

  • Libert F., Passage E., Parmentier M., Simons M.-J., Vassart G., and Mattei M.-G. (1991) Chromosomal mapping of A1 and A2 adenosine receptors, VIP receptor, and a new subtype of serotonin receptor.Genomics 11, 225–227.

    Article  PubMed  CAS  Google Scholar 

  • Linder M. E. and Gilman A. G. (1992) G proteins.Sci. Am. 267, 36–43.

    Google Scholar 

  • Lomasney J. W., Cotecchia S., Lefkowitz R. J., and Caron M. G. (1991) Molecular biology of α-adrenergic receptors: implications for receptor classification and for structure-function relationships.Biochim. Biophys. Acta 1095, 127–139.

    Article  PubMed  CAS  Google Scholar 

  • Lupica C. R., Cass W. A., Zahniser N. R., and Dunwiddie T. V. (1990) Effects of the selective adenosine A2 receptor agonist CGS 21680 on in vitro electrophysiology, cAMP formation and dopamine release in rat hippocampus and striatum.J. Pharmacol. Exp. Ther. 252, 1134–1141.

    PubMed  CAS  Google Scholar 

  • Lüddens H. and Wisden W. (1991) Function and pharmacology of multiple GABAA receptor subunits.Trends Pharmacol. Sci. 12, 49–51.

    Article  PubMed  Google Scholar 

  • Macdonald R. L., Rogers C. J., and Twyman R. E. (1989) Kinetic properties of the GABAA receptor main conductance state of mouse spinal neurons in culture.J. Physiol. (Lond.) 410, 479–499.

    CAS  Google Scholar 

  • Maenhaut C., Van Sande J., Libert F., Abramowicz M., Parmentier M., Vanderhaeghen J.-J., Dumont J. E., Vassart G., and Schiffman S. N. (1991) RDC8 codes for an adenosine A2 receptor with physiological constitutive activity.Biochem. Biophys. Res. Comm. 173, 1169–1178.

    Article  Google Scholar 

  • Martinez-Mir M. I., Probst A., and Palacios J. M. (1991) Adenosine A2 receptors: selective localization in the human basal ganglia and alterations with disease.Neuroscience 42, 697–706.

    Article  PubMed  CAS  Google Scholar 

  • Mayer M. L., Vicklicky L., and Westbrook G. W. (1989) Open channel block of NMDA receptor responses evoked by tricyclic antidepressants.J. Physiol. (Lond.) 415, 329–350.

    CAS  Google Scholar 

  • Merchant K. M., Dobner P. R., and Dorsa D. M. (1992) Differential effects of haloperidol and clozapine on neurotensin gene transcription in rat neostriatum.J. Neurosci. 12, 652–663.

    PubMed  CAS  Google Scholar 

  • Michaelis M. I., Michaelis E. K., and Myers S. L. (1979) Adenosine modulation of synaptosomal dopamine release.Life Sci. 24, 2083–2092.

    Article  PubMed  CAS  Google Scholar 

  • Miles K., Greengard P., and Huganir R. L. (1989) Calcitonin gene-related peptide regulates phosphorylation of the nicotinic acetylcholine receptor in rat myotubes.Neuron 2, 1517–1524.

    Article  PubMed  CAS  Google Scholar 

  • Miyagi T., Sagawa J., Konno K., Handa S., and Tsuiki S. (1990) Biochemical and immunological studies on two distinct ganglioside-hydrolyzing sialidases from the particulate fraction of rat brain.J. Biochem. (Tokyo) 107, 787–793.

    CAS  Google Scholar 

  • Miyoshi R., Kito S., Ishida H., and Nakashima M. (1989) Modulation of dopamine D1 receptor binding by neurotensin in the rat striatum.Neurochem. Int. 15, 493–496.

    Article  CAS  Google Scholar 

  • Monaghan D. T., Olverman H. J., Nguyen L., Watkins J., and Cotman C. W. (1988) Two classes of NMDA recognition sites: differential distribution and differential regulation by glycine.Proc. Natl. Acad. Sci. USA 85, 9836–9840.

    Article  PubMed  CAS  Google Scholar 

  • Monod J., Wyman J., and Changeux J.-P. (1965) On the nature of allosteric transitions: a plausible model.J. Mol. Biol. 12, 88–118.

    PubMed  CAS  Google Scholar 

  • Moran T. H., Robinson P. H., Goldrich M. S., and McHugh P. R. (1986) Two brain cholecystokinin receptors: implications for behavioural actions.Brain Res. 362, 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Morgan M. E. and Vestal R. E. (1989) Methylxanthine effects on caudate dopamine release as measured by in vivo electrochemistry.Life Sci. 45, 2025–2039.

    Article  PubMed  CAS  Google Scholar 

  • Moriyoshi K., Masu M., Ishii T., and Nakanishi S. (1991) Molecular cloning and characterization of the rat NMDA receptor.Nature 354, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Mulle C., Benoit P., and Changeux J. P. (1988) Calcitonin gene-related peptide enhances the rate of desensitization of the nicotinic acetylcholine receptor in cultured mouse muscle cell.Proc. Natl. Acad. Sci. USA 85, 5728–5732.

    Article  PubMed  CAS  Google Scholar 

  • Murayama T., Itahashi Y., and Nomura Y. (1990) Possible involvement of pertussis toxin-sensitive G proteins and D2 dopamine receptors in the A1 adenosine receptor-adenylate cyclase system in rat cerebral cortex.J. Neurochem. 55, 1631–1638.

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff C. B., Luttinger D., Hernandez D. E., Mailman R. B., Mason G. A., Davis S. D., Widerlöv E., Frye G. D., Kilts C., Beaumont K., Breese G. R., and Prange A. J., Jr. (1983a) Interactions of neurotensin with brain dopamine systems: biochemical and behavioural studies.J. Pharmacol. Exp. Ther. 225, 337–345.

    PubMed  CAS  Google Scholar 

  • Nemeroff C. B., Youngblood W., Manberg P. J., Prange A. J., Jr. and Kizer J. S. (1983b) Regional brain concentrations of neuropeptides in Huntington's chorea and schizophrenia.Science 221, 972–975.

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff C. B. (1986) The interaction of neurotensin with dopaminergic pathways in the central nervous system: basic neurobiology and implications for the pathogenesis and treatment of schizophrenia.Psychoneuroendocrinology 11, 15–37.

    Article  PubMed  CAS  Google Scholar 

  • Nikodijeviç O., Daly J. W., and Jacobson K. A. (1990) Characterization of the locomotor depression produced by an A2-selective adenosine agonist.FEBS Lett. 261, 67–70.

    Article  PubMed  Google Scholar 

  • O'Connor W. T., Tanganelli S., Ungerstedt U., and Fuxe K. (1992) The effects of neurotensin on GABA and acetylcholine release in the dorsal striatum of the rat: anin vivo microdialysis study.Brain Res. 573, 209–216.

    Article  PubMed  Google Scholar 

  • O'Dowd B. F., Lefkowitz R. J., and Caron M. G. (1989) Structure of the adrenergic and related receptors.Ann. Rev. Neurosci. 12, 67–83.

    Article  PubMed  Google Scholar 

  • Onali P., Olianas M. C., and Gessa G. L. (1985) Characterization of dopamine receptors mediating inhibition of adenylyl cyclase activity in rat striatum.Mol. Pharmacol. 28, 138–145.

    PubMed  CAS  Google Scholar 

  • Parkinson F. E. and Fredholm B. B. (1990) Autoradiographic evidence for G-protein coupled A2-receptors in rat neostriatum using [3H]CGS21680 as a ligand.Naunyn-Schmiedeberg's Arch. Pharmacol. 342, 85–89.

    Article  CAS  Google Scholar 

  • Paschen W., Röhn G., Meese C. O., Djuricic B., and Schmidt-Kastner R. (1988) Polyamine metabolism in reversible cerebral ischemia: effect of a-difluoromethylornithine.Brain Res. 453, 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Clausell J. and Danscher G. (1985) Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study.Brain Res. 337, 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Premont J., Perez M., Blanc G., Tassin J. P., Thierry A. M., Herve D., and Bockaert J. (1979) Adenosine-sensitive adenylate cyclase in rat brain homogenates: kinetic characteristics, specificity, topographical, subcellular and cellular distribution.Mol. Pharmacol. 16, 790–804.

    PubMed  CAS  Google Scholar 

  • Pycock C. J. (1980) Turning behaviour in animals.Neuroscience 5, 461–514.

    Article  PubMed  CAS  Google Scholar 

  • Roche P. C. and Ryan R. J. (1989) Purification, characterization, and amino-terminal sequence of rat ovarian receptor for luteinizing hormone/human choriogonadotropin.J. Biol. Chem. 264, 4636–4641.

    PubMed  CAS  Google Scholar 

  • Role L. W. (1984) Substance P modulation of acetyl-choline-induced currents in embryonic chicken sympathetic and ciliary ganglion neurons.Proc. Natl. Acad. Sci. USA 81, 2924–2928.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum L. C., Malenick D. A., and Schimerlik M. I. (1987) Phosphorylation of the porcine atrial muscarinic acetylcholine receptor by cAMP dependent protein kinase.Biochemistry 26, 8183–8188.

    Article  PubMed  CAS  Google Scholar 

  • Ross A., Rapuano M., Schmidt J., and Prives J. (1987) Phosphorylation and assembly of nicotinic acetylcholine receptor subunits in cultured muscle cells.J. Biol. Chem. 262, 14,640–14,647.

    CAS  Google Scholar 

  • Ross A., Rapuano M., and Prives J. (1988) Induction of phosphorylation and cell surface redistribution of acetylcholine receptors by phorbol ester and carbamylcholine in cultured chick muscle cells.J. Cell Biol. 107, 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  • Ross E. M. (1989) Signal sorting and amplification through G protein-coupled receptors.Neuron 3, 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Rostene W. H., Fischette C. T., and Mc Ewen B. S. (1983a) Modulation, by VIP of serotonin receptors in membranes from rat hippocampus.J. Neurosci. 3, 2414–2419.

    PubMed  CAS  Google Scholar 

  • Rostene W. H., Fischette C. T., Rainbow T. C., and Mc Ewen B. S. (1983b) Modulation by VIP of serotonin receptors in the dorsal hippocampus of the rat brain: an autoradiographic study.Neurosci. Lett. 37, 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Rothman R. B., Long J. B., Bykov V., Jacobsen A. E.m, Rice K. C., and Holaday J. W. (1988) Beta-FNA binds irreversibly to the opiate receptor complex: in vivo and in vitro evidence.J. Pharmacol. Exp. Ther. 247, 405–416.

    PubMed  CAS  Google Scholar 

  • Rothstein J. D. (1992) Endogenous benzodiazepine receptor ligands, in human and animal hepatic encephalopathy.J. Neurochem. 58, 2102–2115.

    Article  PubMed  CAS  Google Scholar 

  • Sato M., Kiyama H., Yoshida S., Saika T., and Tohyama M. (1991) Postnatal ontogeny of cells expressing prepro-neurotensin/neuromedin N mRNA in the rat forebrain and midbrain: a hybridization study involving isotope-labeled and enzyme-labeled probes.J. Comp. Neurol. 54, 300–315.

    Article  Google Scholar 

  • Sattin A. and Rall T. W. (1970) The effects of adenosine and adenine nucleotides on the cyclic adenosine 3′,5′ phosphate content of guinea pig cerebral cortex slices.Mol. Pharmacol. 6, 13–23.

    PubMed  CAS  Google Scholar 

  • Sawutz D. G., Lanier S. M., Warren C. D., and Graham R. M. (1987) Glycosylation of the mammalian alpha 1-adrenergic receptor by complex type N-linked oligosaccharides.Mol. Pharmacol. 32, 565–571.

    PubMed  CAS  Google Scholar 

  • Schiffmann S. N., Jacobs O., and Vanderhaeghen J.-J. (1991a) RDC8 is expressed by enkephalin but not substance P neurons: an in situ hybridization histochemistry study.J. Neurochem. 57, 1062–1067.

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann S. N., Libert F., Vassart G., and Vanderhaeghen J.-J. (1991b) Distribution of adenosine A2 receptor mRNA in the human brain.Neurosci. Lett. 130, 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann S. N., Halleux P., Menu R., and Vanderhaeghen J.-J. (1993) Adenosine A2a receptor expression in striatal neurons: implications for basal ganglia pathophysiology.Drug Dev. Res. 28, 381–385.

    Article  CAS  Google Scholar 

  • Schindler H., Spillecke F., and Neumann E. (1984) Different channel properties ofTorpedo acetyl-choline receptor monomers and dimers reconstituted in planar membranes.Proc. Natl. Acad. Sci. USA 81, 6222–6226.

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger J. (1988) Signal transduction by allosteric receptor oligomerization.Trends Biochem. Sci. 13, 443–447.

    Article  PubMed  CAS  Google Scholar 

  • Schoffelmeer A. N. M., Yao Y.-H., Gioannini T. L., Hiller J. M., Ofri D., Roques B. P., and Simon E. J. (1990) Cross-linking of human [125I]β-endorphin to opioid receptors in rat striatal membranes: biochemical evidence for the existence of amu/delta opioid receptor complex.J. Pharmacol. Exp. Ther. 253, 419–426.

    PubMed  CAS  Google Scholar 

  • Seeman P., Niznik H. B., Guan H. C., Booth G., and Ulpain C. (1989) Link between D1 and D2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain.Proc. Natl. Acad. Sci. USA 86, 10,156–10,160.

    Article  CAS  Google Scholar 

  • Sheikh S. P., and Williams J. A. (1990) Structural characterization of Y1 and Y2 receptors for neuropeptide Y and peptide YY by affinity cross-linking.J. Biol. Chem. 256, 8304–8310.

    Google Scholar 

  • Shi W.-X. and Bunney B. S. (1991) Neurotensin modulates autoreceptor mediated dopamine effects on midbrain dopamine cell activity.Brain Res. 543, 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Shi W.-X. and Bunney B. S. (1992) Actions of neurotensin: a review of the electrophysiological studies.Ann. NY Acad. Sci. 668, 129–145.

    Article  PubMed  CAS  Google Scholar 

  • Sibley D. R., and Creese I. (1983) Regulation of ligand binding to pituitary D-2 dopaminergic receptors. Effects of divalent cations and functional group modification.J. Biol. Chem. 25, 4957–4961.

    Google Scholar 

  • Sieghart W. (1992) GABAA receptors: ligand-gated Cl ion channels modulated by multiple, drug-binding sites.Trends Pharmacol. Sci. 13, 446–450.

    Article  PubMed  CAS  Google Scholar 

  • Siman R., Baudry M., and Lynch G. (1985) Regulation of glutamate receptor binding by the cytoskeletal protein fodrin.Nature 313, 225–228.

    Article  PubMed  CAS  Google Scholar 

  • Simmons L. K., Schuetze S. M., and Role L. W. (1990) Substance P modulates single-channel properties of neuronal nicotinic acetylcholine receptors.Neuron 4, 393–403.

    Article  PubMed  CAS  Google Scholar 

  • Simon M. I., Strathmann. M. P., and Gautam N. (1991) Diversity of G proteins in signal transduction.Science 252, 802–808.

    Article  PubMed  CAS  Google Scholar 

  • Simonds W. F., Butrynski J. E., Gautman N., Unson C. G., and Spiegel A. M. (1991) G-protein beta/gamma dimers: membrane targeting requires subunit coexpression and intact gamma CAAX domain.J. Biol. Chem. 266, 5363–5366.

    PubMed  CAS  Google Scholar 

  • Sivilotti L. and Nistri A. (1990) GABA receptor mechanisms in the central nervous system.Prog. Neurobiol. 36, 35–92.

    Article  Google Scholar 

  • Smith K. E., Borden L. A., Hartig P. R., Branchek, T., and Weinshank R. L. (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors.Neuron 8, 927–935.

    Article  PubMed  CAS  Google Scholar 

  • Snyder S. H., Katims J. J., Annau Z., Bruns R. F., and Daly J. W. (1981) Adenosine receptors and behavioural actions of methylxanthines.Proc. Natl. Acad. Sci. USA,78, 3260–3264.

    Article  PubMed  CAS  Google Scholar 

  • Snyder S. H. (1985) Adenosine as a neuromodulator.Ann. Rev. Neurosci. 8, 103–124.

    Article  PubMed  CAS  Google Scholar 

  • Spealman R. D. and Coffin V. L. (1986) Behavioural effects of adenosine analogues in squirrel monkeys: relation to adenosine A2 receptors.Psychopharmacology 90, 419–421.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel A. M., Backlund P. S. J. R., Butrynski J. E., Jones T. L. Z., and Simonds W. F. (1991) The G protein connection: molecular basis of membrane association.Trends Biochem. Sci. 16, 338–341.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel A. M. (1992) G proteins in cellular control.Curr. Opin. Cell Biol. 4, 203–211.

    Article  PubMed  CAS  Google Scholar 

  • Stallcup W. B. and Patrick J. (1980) Substance P enhances cholinergic receptor desensitization in a clonal nerve cell line.Proc. Natl. Acad. Sci. USA 77, 634–638.

    Article  PubMed  CAS  Google Scholar 

  • Sternweis P. C. and Pang I. (1990) The G-protein-channel connection.Trends Neurosci. 13, 122–126.

    Article  PubMed  CAS  Google Scholar 

  • Stevens C. (1993) Quantal release of neurotransmitter and long-term potentiation.Cell 72,Neuron 10 (Suppl.), 55–63.

    Article  PubMed  Google Scholar 

  • Strange P. G. (1990) Aspects of the structure of the D2 dopamine receptor.Trends Neurosci. 13, 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Study R. E. and Barker J. L. (1981) Diazepam and (-) pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of γ-aminobutyric acid responses in cultured central neurons.Proc. Natl. Acad. Sci. USA 78, 7180–7184.

    Article  PubMed  CAS  Google Scholar 

  • Tallman J. F., Thomas, J. W., and Gallager D. W. (1978) GABA-ergic modulation, of BZ binding site sensitivity.Nature,274, 384–385.

    Article  Google Scholar 

  • Tanaka K., Masu M., and Nakanishi S. (1990) Structure and functional expression of the cloned rat neurotensin receptor.Neuron 4, 847–851.

    Article  PubMed  CAS  Google Scholar 

  • Tanganelli S., von Euler G., Fuxe K., Agnati L. F., and Ungerstedt U. (1989) Neurotensin, counteracts apomorphine-induced inhibition of dopamine release as studied by microdialysis in rat neostriatum.Brain Res. 502, 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Tanganelli S., Fuxe K., von Euler G., Agnati L. F., Ferraro L., and Ungerstedt U. (1990) Involvement of cholecystokinin in the control of striatal dopamine autoreceptors.Naunyn-Schmiedeberg's Arch. Pharmacol. 342, 300–304.

    Article  CAS  Google Scholar 

  • Tanganelli S., Li X.-M., Ferraro L., von Euler G., O'Connor W. T., Bianchi C., Beani L., and Fuxe K. (1993) Neurotensin and cholecystokinin octapeptide control synergistically dopamine release and dopamine D2 receptor affinity in rat neostriatum.Eur. J. Pharmacol. 230, 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Thithapandha A., Maling H. M., and Gillette J. R. (1972) Effects of caffeine and theophylline on activity of rats in relation to brain xanthine concentrations.Proc. Exp. Biol. Med. 139, 582–586.

    CAS  Google Scholar 

  • Titeler M. and Seeman P. (1979) Selective labelling of different DA receptors by a new agonist 3H-ligand: 3H-NPA.Eur. J. Pharmacol. 56, 291,292.

    Article  PubMed  CAS  Google Scholar 

  • Turner J. T., James-Kracke M. R., and Camden J. M. (1990) Regulation of neurotensin receptor and intracellular calcium in HT29 cells.J. Pharmacol. Exp. Ther. 253, 1049–1056.

    PubMed  CAS  Google Scholar 

  • Ullrich A. and Schlessinger J. (1990) Signal transduction by receptors with tyrosine kinase activity.Cell 61, 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U. (1971) Postsynaptic supersensitivity after 6-OH-DA induced degeneration of the nigrostriatal DA system in the rat brain.Acta Physiol. Scand. 367, 69–93.

    CAS  Google Scholar 

  • Vallar L. and Meldolesi J. (1989) Mechanisms of signal transduction at DA D2 receptors.Trends Pharmacol. Sci. 10, 74–77.

    Article  PubMed  CAS  Google Scholar 

  • Van Calker D., Muller M., and Hamprecht B. (1979) Adenosine regulates via two different types of receptors the accumulation of cAMP in cultured brain cells.J. Neurochem. 33, 999–1005.

    Article  PubMed  Google Scholar 

  • Van Ree J. M., Gadfori O., and DeWied D. (1983) In rats, the behavioral profile of CCK-8 related peptides resembles that of antipsychotic agents.Eur. J. Pharmacol. 93, 63–78.

    Article  PubMed  Google Scholar 

  • Van Tol H. H. M., Bunzow J. B., Guan H. C., Sunahara R. K., Seeman P., Niznik H. B., and Civelli O. (1991) Cloning of the gene for a human D4 receptor with high affinity for the antipsychotic clozapine.Nature 350, 610–614.

    Article  PubMed  Google Scholar 

  • Vapaatalo G. C. and McGuffin-Clineschmidt J. C. (1981) Stereospecificity in some central and circulatory effects of phenylisopropyl-adenosine (PIA).Drug Res. 25, 407–410.

    Google Scholar 

  • Venter J. C. and Fraser C. M. (1983) Beta-adrenergic recptor isolation and characterization with immobilized drugs and monoclonal antibodies.Fed. Proc. 42, 273–278.

    PubMed  CAS  Google Scholar 

  • Vicini S., Mienville J.-M., and Costa E. (1987) Actions of benzodiazepine and β-carboline derivatives on γ-aminobutyric acid-activated Cl channels recorded from membrane patches of neonatal rat cortical neurons in culture.J. Pharmacol. Exp. Ther. 243, 1195–1201.

    PubMed  CAS  Google Scholar 

  • von Euler G. and Fuxe K. (1987) Neurotensin reduces the affinity of D2, dopamine receptors in rat striatal membranes.Acta Physiol. Scand. 131, 525,526.

    Google Scholar 

  • von Euler G., Fuxe K., van der Ploeg I., Fredholm B. B., and Agnati L. F. (1989) Pertussis toxin treatment counteracts intramembrane interactions, between neuropeptide Y receptors and a2-adrenoceptors.Eur. J Pharmacol. 172, 435–441.

    Article  Google Scholar 

  • von Euler G., Mailleux P., Vanderhaeghen J. J., and Fuxe K. (1990a) Neurotensin reduces the affinity of dopamine D2 receptors in membranes from post mortem human caudate-putamen.Neurosci. Lett. 109, 325–30.

    Article  Google Scholar 

  • von Euler G., Meister B., Hökfelt T., Eneroth P., and Fuxe K. (1990b) Intraventricular injection, of neurotensin reduces dopamine D2 agonist binding in rat forebrain and intermediate lobe of the pituitary gland. Relationship to serum hormone levels and nerve terminal coexistence.Brain Res. 531, 253–262.

    Article  Google Scholar 

  • von Euler G. (1991) Biochemical characterization of the intramembrane interaction between neurotensin and dopamine D2 receptors in the rat brain.Brain Res. 561, 93–99.

    Article  Google Scholar 

  • von Euler G., van der Ploeg I., Fredholm B. B., and Fuxe K. (1991) Neurotensin decreases the affinity of dopamine D2 agonist binding by a G-protein-independent mechanism.J. Neurochem. 56, 178–183.

    Article  Google Scholar 

  • von Euler G., Mailleux P., von Euler M., Schiffmann S. N., Vanderhaeghen J. J., and Fuxe K. (1992) Coactivation of dopamine D1 and D2 receptors increases the affinity of cholecystokinin-8 receptors in membranes from post-mortem human caudateputaman.Brain Res. 584, 157–162.

    Article  Google Scholar 

  • Wahlestedt C. and H»kanson R. (1987) Effects of NPY at sympathetic neuroeffector junctions: existence of Y1 and Y2 receptors, inNeuronal Messengers in Vascular Function (Nobin A., Owman C., and Areklo-Nobin B., eds.), Elsevier, Amsterdam, pp. 231–242.

    Google Scholar 

  • Waldeck B. (1973) Sensitization, by caffeine of central catecholamine receptors.J. Neural. Transm. 34, 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Wang R. Y. and Hu X.-T. (1984) Does cholecystokinin potentiate dopamine action in the nucleus accumbens?Brain Res. 390, 363–367.

    Google Scholar 

  • Weiss D. S. and Magleby K. L. (1989) Gating scheme for single GABA-activated Cl channels determined from stability plots, dwell-time distributions and adjacentinterval durations.J. Neurosci. 9, 1314–1324.

    PubMed  CAS  Google Scholar 

  • White B. C., Simpson C. C., and Harkins D. (1978) Monoamine synthesis and caffeine-induced locomotor activity.Neuropharmacology 27, 511–513.

    Article  Google Scholar 

  • Williams K., Dawson V. L., Romano C., Dichter M. A., and Molinoff P. B. (1990) Characterization of polyamines having agonist, antagonist, and inverse agonist effects at the polyamine recognition site of the NMDA receptor.Neuron 5, 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Williams K., Romano C., Dichter M. A., and Molinoff P. B. (1991) Modulation of NMDA receptor by polyamines.Life Sci. 48, 469–498.

    Article  PubMed  CAS  Google Scholar 

  • Wood P. L., Kim H. S., and Hutchison A. (1989) Inhibition of nigrostriatal release of DA in the rat by adenosine receptor agonist: A1 receptor mediation.Neuropharmacology 28, 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Yeramian E., Trautmann A., and Claverie P. (1986) Acetylcholine receptors are not functionally independent.Biophys. J. 50, 253–263.

    Article  PubMed  CAS  Google Scholar 

  • Zetler G. (1985) Neuropharmacological profile of cholecystokinin-like peptides.Ann. NY Acad. Sci. 448, 448–469.

    Article  PubMed  CAS  Google Scholar 

  • Zoli M., Zini I., Grimaldi R., Biagini G., and Agnati L. F. (1993) Effects of putrescine synthesis blockade on neuronal loss and astroglial reaction after transient forebrain ischemia.Int. J. Dev. Neurosci., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoli, M., Agnati, L.F., Hedlund, P.B. et al. Receptor-receptor interactions as an integrative mechanism in nerve cells. Mol Neurobiol 7, 293–334 (1993). https://doi.org/10.1007/BF02769180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02769180

Index Entries

Navigation