Skip to main content
Log in

Probing modifications of the neuronal cytoskeleton

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The prominent death of central neurons in Alzheimer's and Parkinson's is reflected by changes in cell shape and by the formation of characteristic cytoskeletal inclusions (neurofibrillary tangles, Lewy bodies). This review focuses on the biology of neurofilaments and microtubule-associated proteins and identifies changes that can occur to these elements from basic and clinical research perspectives. Attention is directed at certain advances in neurobiology that have been especially integral to the identification of epitope domains, protein isoforms, and posttranslational (phosphorylation) events related to the composition, development, and structure of the common cytoskeletal modifications.

Recently, a number of experimental strategies have emerged to simulate the aberrant changes in neurodegenerative disorders and gain insight into possible molecular events that contribute to alterations of the cytoskeleton. Descriptions of specific systems used to induce modifications are presented. In particular, unique neural transplantation methods in animals have been used to probe possible molecular and cellular conditions concerned with abnormal cytoskeletal changes in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aletta J. M., Lewis S. A., Cowan N. J., and Greene L. A. (1988) Nerve growth factor regulates both the phosphorylation and steady-state levels of microtubule-associated protein 1.2 (MAP 1.2).J. Cell Biol. 106, 1573–1581.

    PubMed  CAS  Google Scholar 

  • Alzheimer A. (1907) Über eine eigenartige Erkrankung der Hirnrinde.Algemeine Zeitschrift für Psychiatrie 64, 146–148.

    Google Scholar 

  • Anderton B. H., Breinburg D., Downes M. J., Green P. J., Tomlinson B. E., Ulrich J., Wood J. N., and Kahn J. (1982) Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants.Nature 298, 84–86.

    PubMed  CAS  Google Scholar 

  • Arai H., Lee V. M.-Y., Otvos L., Greenberg B. D., Lowery D. E., Sharma S. K., Schmidt M. L., and Trojanowski J. Q. (1990) Defined neurofilament, and β-amyloid precursor protein epitopes distinguish Alzheimer from non-Alzheimer senile plaques.Proc. Natl. Acad. Sci. USA 87, 2249–2253.

    PubMed  CAS  Google Scholar 

  • Arai H., Lee V. M.-Y., Hill W. D., Greenberg B. D., and Trojanowski J. Q. (1992a) Lewy bodies contain beta-amyloid precursor proteins of Alzheimer's disease.Brain Res. 585, 386–390.

    PubMed  CAS  Google Scholar 

  • Arai H., Schmidt M. L., Lee V. M.-Y., Hurtig H. I., Greenberg B. D., Adler C. H., and Trojanowski J. Q. (1992b) Epitope analysis of senile plaque components in the hippocampus of patients with Parkinson's disease.Neurology 42, 1315–1322.

    PubMed  CAS  Google Scholar 

  • Baas P. W., Deitch J. S., Black M. M., and Banker G. A. (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite.Proc. Natl. Acad. Sci. USA 85, 8335–8339.

    PubMed  CAS  Google Scholar 

  • Baas P. W. and Black M. M. (1990) Individual microtubules in the axon consist of domains that differ in both composition and stability.J. Cell Biol. 111, 495–509.

    PubMed  CAS  Google Scholar 

  • Baas P. W., Pienkowski T. P., and Kosik K. S. (1991) Processes induced by tau expression in Sf9 cells have an axon-like microtubule organization.J. Cell Biol. 115, 1333–1344.

    PubMed  CAS  Google Scholar 

  • Bancher C., Brunner C., Lassmann H., Budka H., Jellinger K., Wiche G., Seitelberger F., Grundke-Iqbal I., Iqbal K., and Wisniewski H. M. (1989a) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer's disease.Brain Res. 477, 90–99.

    PubMed  CAS  Google Scholar 

  • Bancher C., Lassmann H., Budka H., Jellinger D., Grundke-Iqbal I., Wiche G., Seitelberger F., and Wisniewski H. M. (1989b) An antigenic profile of Lewy bodies: immunocytochemical indication for protein phosphorylation and ubiquitination.J. Neuropathol. Exp. Neurol. 48, 81–93.

    PubMed  CAS  Google Scholar 

  • Bernhardt R. and Matus A. (1984) Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons.J. Comp. Neurol. 226, 203–221.

    PubMed  CAS  Google Scholar 

  • Biernat J., Mandelkow E. M., Schröter C., Lichtenberg-Kraag B., Steiner B., Berling B., Meyer H., Mercken M., Vandermeeren A., Goedert M., and Mandelkow E. (1992) The switch of tau protein to an Alzheimer-like state induces the phosphorylation of two serine-proline motifs upstream of the microtubule binding region.EMBO J. 11, 1593–1597.

    PubMed  CAS  Google Scholar 

  • Bigot D. and Hunt S. P. (1991) The effects of quisqualate and nocodazole on the organization of MAP2 and neurofilaments in spinal cord neurons in vitro.Neurosci. Lett. 131, 21–26.

    PubMed  CAS  Google Scholar 

  • Binder L. I., Frankfurter A., Kim H., Caceres A., Payne M. R., and Rebhun L. I. (1984) Heterogeneity of microtubule-associated protein 2 during rat brain development.Proc. Natl. Acad. Sci. USA 81, 5613–5617.

    PubMed  CAS  Google Scholar 

  • Binder L. I., Frankfurter A., and Rebhun L. I. (1985) The distribution of tau in the mammalian nervous system.J. Cell Biol. 101, 1371–1378.

    PubMed  CAS  Google Scholar 

  • Bizzi A., Crane R. C., Autilio-Gambetti L., and Gambetti P. (1984) Aluminum effect of slow axonal transport: a novel impairment of neurofilament transport.J. Neurosci. 4, 722–731.

    PubMed  CAS  Google Scholar 

  • Bizzi A. and Gambetti P. (1986) Phosphorylation of neurofilaments is altered by aluminum intoxication.Acta Neuropathol. 71, 154–158.

    PubMed  CAS  Google Scholar 

  • Black M. M., Baas P. W., and Humphries S. (1989) Dynamics of α-tubulin deacetylation in intact neurons.J. Neurosci. 9, 358–368.

    PubMed  CAS  Google Scholar 

  • Bloom G. S., Schoenfeld T. A., and Vallee R. B. (1984) Widespread distribution of the major polypeptide component of MAP1 (microtubule-associated protein 1) in the nervous system.J. Cell Biol. 98, 320–330.

    PubMed  CAS  Google Scholar 

  • Bondareff W., Wischik C. M., Novak M., Amos W. B., Klug A., and Roth M. (1990) Molecular analysis of neurofibrillary degeneration in Alzheimer's disease: an immunohistochemical study.Am. J. Pathol. 137, 711–723.

    PubMed  CAS  Google Scholar 

  • Braak H., Braak E., Grundke-Iqbal I., and Iqbal K. (1986) Occurrence of neuropil threads in the senile human brain and in Alzheimer's disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques.Neurosci. Lett. 65, 351–355.

    PubMed  CAS  Google Scholar 

  • Braak H. and Braak E. (1988) Neuropil threads occur in dendrites of tangle-bearing nerve cells.Neuropathol. Appl. Neurobiol. 14, 39–44.

    PubMed  CAS  Google Scholar 

  • Bramblett G. T., Trojanowski J. Q., and Lee V. M.-Y. (1992) Regions with abundant neurofibrillary pathology in human brain exhibit a selective reduction in levels of binding-competent tau and accumulations of abnormal tau-isoforms (A68 proteins).Lab. Invest. 66, 212–222.

    PubMed  CAS  Google Scholar 

  • Bramblett G. T., Goedert M., Jakes R., Merrick S. E., Trojanowski J. Q., and Lee V. M-Y. (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding.Neuron 10, 1089–1099.

    PubMed  CAS  Google Scholar 

  • Brion J. P., Guilleminot J., Couchie D., Flament Durand J., and Nunez J. (1988) Both adult and juvenile tau microtubule-associated proteins are axon specific in the developing and adult rat cerebellum.Neurosci. 25, 139–146.

    CAS  Google Scholar 

  • Brion J. P., Hanger D. P., Couck A. M., and Anderton B. (1991) A68 proteins in Alzheimer's disease are composed of several tau isoforms in a phos phorylated state which affects their electrophoretic mobilities.Biochem. J. 279, 831–836.

    PubMed  CAS  Google Scholar 

  • Brugg B. and Matus A. (1991) Phosphorylation determines the binding of microtubule-associated protein 2 (MAP-2) to microtubules in living cells.J. Cell Biol. 114, 735–743.

    PubMed  CAS  Google Scholar 

  • Burgoyne R. D. and Cuming R. (1984) Ontogeny of microtubule-associated protein 2 in rat cerebellum: differential expression of the doublet polypeptides.Neuroscience 11, 157–167.

    CAS  Google Scholar 

  • Burgoyne R. D. (1991) High molecular weight microtubule-associated proteins of brain, inThe Neuronal Cytoskeleton (Burgoyne R. D., ed.), Wiley Liss, New York, pp. 75–91.

    Google Scholar 

  • Buxbaum J. D., Gandy S. E., Cicchetti P., Ehrlich M. E., Czernik A. J., Fracasso P. R., Ramabhadran T. V., Unterbeck A. J., and Greengard P. (1990) Processing of Alzheimer β/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation.Proc. Natl. Acad. Sci. USA 87, 6003–6006.

    PubMed  CAS  Google Scholar 

  • Caceres A. Kosik K. S. (1990) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons.Nature 343, 461–463.

    PubMed  CAS  Google Scholar 

  • Calvert R. A. and Anderton B. H. (1985) A microtubulek-associated protein (MAP1) which is expressed at elevated levels during development in rat cerebellum.EMBO J. 4, 1171–1176.

    PubMed  CAS  Google Scholar 

  • Carden M. J., Schlaepfer W. W., and Lee, V. M.-Y. (1985) The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state.J. Biol. Chem. 260, 9805–9817.

    PubMed  CAS  Google Scholar 

  • Chauhan N. B., Spencer P. S., and Sabri M. I. (1993) Acrylamide-induced depletion of microtubule-associated proteins (MAP1 and MAP2) in the rat expyramidal system.Brain Res. 602, 111–118.

    PubMed  CAS  Google Scholar 

  • Chen, J., Kanai Y., Cowan N. J., and Hirokawa N. (1992) Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons.Nature 360, 674–677.

    PubMed  CAS  Google Scholar 

  • Chiu F.-C., Barnes E. A., Das K., Haley J., Socolow P., Macaluso F. P., and Fant J. (1989) Characterization of a novel 66 kd subunit of mammalian neurofilaments.Neuron 2, 1435–1445.

    PubMed  CAS  Google Scholar 

  • Cleveland D. W., Hwo S.-Y., and Kirschner M. W. (1977) Physical and chemical properties of purified tau factor and the role of microtubule assembly.J. Mol. Biol. 116, 227–247.

    PubMed  CAS  Google Scholar 

  • Cole G. M., Masliah E., Shelton E. R., Chan H. W., Terry R. D., and Saitoh T. (1991) Accumulation of N-terminal sequence but not the C-terminal sequence of β-protein precursor in the neuritic component of Alzheimer disease senile plaque.Neurobiol. Aging 12, 85–91.

    PubMed  CAS  Google Scholar 

  • Cork L. C., Sternberger N. H., Sternberger L. A., Casanova M. F., Struble R. G., and Price D. L. (1986) Phosphorylated neurofilament antigens in neurofibrillary tangles in Alzheimer's disease.J. Neuropathol. Exp. Neurol. 45, 56–64.

    PubMed  CAS  Google Scholar 

  • Cras P., Kawai M., Lowery D., Gonzalez-DeWhitt P., Greenberg B., and Perry G. (1991) Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein.Proc. Natl. Acad. Sci. USA 88, 7552–7556.

    PubMed  CAS  Google Scholar 

  • Davies P. (1992) Alz 50 as a reagent to assess animal models of Alzheimer's disease.Neurobiol. Aging 13, 613, 614.

    PubMed  CAS  Google Scholar 

  • DeCamilli P., Miller P. E., Navone F., Theurkauf W. E., and Vallee R. B. (1984) Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence.Neuroscience 11, 819–846.

    Google Scholar 

  • Diaz-Nido J., Serrano L., Mendez E., and Avila J. (1988) A casein kinase II-related activity is involved in phosphorylation of microtubule-associated protein MAP 1B during neuroblastoma cell differentiation.J. Cell Biol. 106, 2057–2065.

    PubMed  CAS  Google Scholar 

  • Dickson, D. W., Davies P., Mayeux R., Crystal H., Horoupian D. S., Thompson A., and Goldman J. E. (1987) Diffuse Lewy body disease: neuropathological and biochemical studies of six patients.Acta Neuropathol. 75, 8–15.

    PubMed  CAS  Google Scholar 

  • Dickson D. W., Crystal H., Mattiace L. A., Kress Y., Schwagerl A., Ksiezak-Reding H., Davies P., and Yen S.-H. C. (1989) Diffuse Lewy body disease: light and electron microscopic immunocytochemistry of senile plaques.Acta Neuropathol. 78, 572–584.

    PubMed  CAS  Google Scholar 

  • Dickson D. W., Ksiezak-Reding H., Liu W.-K., Davies P., Crowe A., Yen, S.-H. C. (1992) Immunocytochemistry of neurofibrillary tangles with antibodies to subregions of tau protein: identification of hidden and cleaved tau epitopes and a new phosphorylation site.Acta Neuropathol. 84, 596–605.

    PubMed  CAS  Google Scholar 

  • DiPatre P. L. and Butcher L. L. (1991) Cholinergic fiber perturbations and neuritic outgrowth produced by intrafimbrial infusion of the neurofilament-disrupting agent 2,5-hexanedione.Brain Res. 539, 126–132.

    CAS  Google Scholar 

  • Doering L. C. and Aguayo A. J. (1987) Hirano bodies and other cytoskeletal abnormalities develop in fetal rat CNS grafts isolated for long periods in peripheral nerve.Brain Res. 401, 178–184.

    PubMed  CAS  Google Scholar 

  • Doering L. C., Nilsson O. G., and Aguayo A. J. (1991a) Abnormal perikaryal immunoreactivity to the phosphorylated heavy neurofilament unit in intracerebral basal forebrain transplants.Exp. Neurol. 111, 1–8.

    PubMed  CAS  Google Scholar 

  • Doering L. C., Eriksdotter-Nilsson M., and Olson L. (1991b) Spatial distributions of cytoskeletal proteins and the NGF-receptor in septal transplants in oculo: protection from abnormal immunoreactivity by hippocampal co-grafts.Neuroscience 44, 381–392.

    PubMed  CAS  Google Scholar 

  • Doering L. C. (1992) Appropriate target interactions prevent abnormal cytoskeletal changes in neurons: A study with intra-sciatic grafts of the septum and the hippocampus.J. Neurosci. 12, 3399–3413.

    PubMed  CAS  Google Scholar 

  • Dräger U. C. and Hofbauer A. (1984) Antibodies to heavy neurofilament subunit detect a subpopulation of damaged ganglion cells in retina.Nature 309, 624–626.

    PubMed  Google Scholar 

  • Endoh R., Ogawara M., Iwatsubo T., and Mori H. (1993) Lack of the carboxy terminal sequence of tau in ghost tangles.Brain Res. 601, 164–172.

    PubMed  CAS  Google Scholar 

  • Esch F. S., Keim P. S., Beattie E. C., Blacher R. W., Culwell A. R., Oltersdorf, T., McClure D., and Ward P. J. (1990) Cleavage of amyloid β peptide during constitutive processing of its precursor.Science 248, 1122–1124.

    PubMed  CAS  Google Scholar 

  • Ferreira A., Busciglio J., and Caceres A. (1989) Microtubule formation and neurite growth in cerebellar macroneurons which develop in vitro: evidence for the involvement of the microtubule-associated proteins, MAP-1a, HMW-MAP2 and tau.Dev. Brain Res. 49, 215–228.

    CAS  Google Scholar 

  • Fine A., Ault B., Rapoport S. I. (1991) Mouse trisomy 16 neurons, a model of human trisomy 21 (Down syndrome), can be maintained by intracerebral transplantation.Neurosci. Lett. 122, 4–8.

    PubMed  CAS  Google Scholar 

  • Flament S., Delacourte A., and Mann D. H. A. (1990a) Phosphorylation of tau proteins: a major event during the process of neurofibrillary degeneration. A comparative study between Alzheimer's disease and Down's Syndrome.Brain Res. 516, 15–19.

    PubMed  CAS  Google Scholar 

  • Flament S., Delacourte A., Delaère P., Duyckaerts C., and Hauw J.-J. (1990b) Correlation between microscopical changes and Tau 64 and 69 biochemical detection in senile dementia of the Alzheimer type.Acta Neuropathol. 80, 212–215.

    PubMed  CAS  Google Scholar 

  • Forno L. S., Sternberger L. A., Sternberger N. H., Strefling A. M., Swanson K., and Eng L. F. (1986) Reaction of Lewy bodies with antibodies to phosphorylated and non-phosphorylated neurofilaments.Neurosci. Lett. 64, 253–258.

    PubMed  CAS  Google Scholar 

  • Galloway P. G., Grundke-Iqbal I., Iqbal K., and Perry G. (1988) Lewy bodies contain epitopes both shared and distinct from Alzheimer neurofibrillary tangles.J. Neuropathol. Exp. Neurol. 47, 654–663.

    PubMed  CAS  Google Scholar 

  • Galloway P. G., Mulvihill, P., and Perry G. (1992) Filaments of lewy bodies contain insoluable cytoskeletal elements.Am. J. Pathol. 140, 809–822.

    PubMed  CAS  Google Scholar 

  • Gandy S. E., Czernik A., and Greengard P. (1988) Phosphorylation of Alzheimer amyloid precursor protein peptide by protein kinase C and Ca2+/ calmodulin-dependent protein kinase II.Proc. Natl. Acad. Sci. USA 85, 6218–6221.

    PubMed  CAS  Google Scholar 

  • Garner C. C. and Matus A. (1988) Different forms of microtubule-associated protein 2 (MAP2) are encoded by separate mRNA transcripts.J. Cell Biol. 106, 779–784.

    PubMed  CAS  Google Scholar 

  • Garner C. C., Brugg B., and Matus A. (1988a) A 70 kDa microtubule-associated protein (MAP2c), related to MAP2.J. Neurochem. 50, 609–615.

    PubMed  CAS  Google Scholar 

  • Garner C. C., Tucker R. P., and Matus A. (1988b) Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites.Nature 336, 674–677.

    PubMed  CAS  Google Scholar 

  • Garner C. C., Garner A., Huber G., Kozak C., and Matus A. (1990) Molecular cloning of microtubule-associated protein 1 (MAP1A) and microtubule-associated protein 5 (MAP1B): identification of distinct genes and differential expression in developing brain.J. Neurochem. 55, 146–154.

    PubMed  CAS  Google Scholar 

  • Geisler N., Kaufmann E., Fischer S., Plessmann U., and Weber K. (1983) Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins.EMBO J. 8, 1295–1302.

    Google Scholar 

  • Geisler N., Fischer S., Vandekerckhove J., Van Damme J., Plessmann U., and Weber K. (1985) Proteinchemical characterization of NF-H, the largest mammalian neurofilament component; intermediate filament-type sequences followed by a unique carboxy-terminal extension.EMBO J. 4, 57–63.

    PubMed  CAS  Google Scholar 

  • Geisler N., Vanderkerckhove J., and Weber K. (1987) Localization and sequence characterization of the major phosphorylation sites of the high molecular mass neurofilament proteins M and H.FEBS Lett. 221, 403–407.

    PubMed  CAS  Google Scholar 

  • Georgieff I. S., Liem R. K. M., Mellado W., Nunez J., and Shelanski M. L. (1991) High molecular weight tau: preferential localization in the peripheral nervous system.J. Cell Sci. 100, 55–60.

    PubMed  CAS  Google Scholar 

  • Gilbert M. R., Harding B. L., Hoffman P. N., Griffin J. W., Price D. L., and Troncoso J. C. (1992) Aluminum-induced neurofilamentous changes in cultured rat dorsal root ganglia explants.J. Neurosci. 5, 1763–1771.

    Google Scholar 

  • Goedert M., Spillantini M., Jakes R., Rutherford D., and Crowther R. A. (1989) Multiple isoforms of human microtubule-associated protein-tau: sequences and localization in neurofibrillary tangles of Alzheimer's-disease.Neuron 3, 519–526.

    PubMed  CAS  Google Scholar 

  • Goedert M. and Jakes R. (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization.EMBO J. 9, 4225–4230.

    PubMed  CAS  Google Scholar 

  • Goedert M., Crowther R. A., and Garner C. C. (1991) Molecular characterization of microtubule-associated proteins tau and MAP2.Trend. Neurosci. 14, 193–199.

    PubMed  CAS  Google Scholar 

  • Goedert M., Spillantini M. G., Cairns N. J., and Crowther R. A. (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms.Neuron 8, 159–168.

    PubMed  CAS  Google Scholar 

  • Gold B. G., Griffin J. W., and Price D. L. (1985) Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration.J. Neurosci. 5 1755–1768.

    PubMed  CAS  Google Scholar 

  • Gold B. G., Price D. L., Griffin J. W., Rosenfeld J., Hoffman P. N., Sternberger N. H., and Sternberger L. A. (1988) Neurofilament antigens in acrylamide neuropathy.J. Neuropathol. Exp. Neurol. 47, 145–157

    PubMed  CAS  Google Scholar 

  • Gold B. G. and Austin D. R. (1991) Regulation of aberrant neurofilament phosphorylation in neuronal perikarya. III. Alterations following single and continuous β,β′-iminodipropionitrile administrations.Brain Res. 563, 151–162.

    PubMed  CAS  Google Scholar 

  • Golde T. E., Estus S., Usiak M., Younkin L. H., and Younkin S. G. (1990) Expression of β amyloid protein precursor mRNAs: recognition of a novel alternatively spliced form and quantitation in Alzheimer's disease using PCR.Neuron 4, 253–267.

    PubMed  CAS  Google Scholar 

  • Golde T. E., Estus S., Younkin L. H., Selkoe D. J., and Younkin S. G. (1992) Processing of the amyloid protein precursor to potentially amyloidogenic derivatives.Science 255, 728–730.

    PubMed  CAS  Google Scholar 

  • Goldman J. E., Yen S. H., Chiu F. C., and Peress N. S. (1983) Lewy bodies of Parkinson's disease contain neurofilament antigens.Science 221, 1082–1084.

    PubMed  CAS  Google Scholar 

  • Goldman J. E. and Yen S. H. (1986) Cytoskeletal protein abnormalities in neurodegenerative diseases.Ann. Neurol. 19, 209–223.

    PubMed  CAS  Google Scholar 

  • Goldstein M. E., Cooper H. S., Bruce J., Carden M. J., Lee V. M.-Y., and Schlaepfer W. W. (1987) Phosphorylation of neurofilament proteins and chromatolysis following transection of rat sciatic nerve.J. Neurosci. 7, 1586–1594.

    PubMed  CAS  Google Scholar 

  • Greenberg S. G. and Davies P. (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis.Proc. Natl. Acad. Sci. USA 87, 5827–5831.

    PubMed  CAS  Google Scholar 

  • Greenberg S. G., Davies P., Scheim J. D. and Binder L. I. (1992) Hydrofluoric acid-treated τPHF proteins display the same biochemical properties as normal tau.J. Biol. Chem. 267, 564–569.

    PubMed  CAS  Google Scholar 

  • Greengard P. (1987) Neuronal phosphoproteins. Mediators of signal transduction.Mol. Neurobiol. 1, 81–119.

    PubMed  CAS  Google Scholar 

  • Griffin J. W., Hoffman P. N., Clark A. W., Carroll P. T., and Price D. L. (1978) Slow axonal transport of neurofilament proteins: impairment by β,β′-iminodipropionitrile administration.Science 202, 633–635.

    PubMed  CAS  Google Scholar 

  • Griffin J. W. and Price D. L. (1980) Proximal axonopathies induced by toxic chemicals, inExperimental and Clinical Neurotoxicology (Spencer P. S. and Schaumburg H. H., eds.), Williams and Wilkins, Baltimore, MD, pp. 161–178.

    Google Scholar 

  • Griffin J. W., Fahnestock K. E., Price D. L., and Hoffman P. N. (1983) Microtubule neurofilament segregation produced by β,β′-iminodipropionitrile: evidence for the association of fast axonal transport with microtubules.J. Neurosci. 3, 557–566.

    PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I., Iqbal K., Tung M., Quinlan H., Wisniewski H., and Binder L. (1986) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology.Proc. Natl. Acad. Sci. USA 83, 4913–4917.

    PubMed  CAS  Google Scholar 

  • Gundersen G. G., Halnoski M. H., and Bulinski J. C. (1984) Distinct populations of microtubules: tyrosinated and non-tyrosinated alpha tubulin are distributed differently in vivo.Cell 38, 779–789.

    PubMed  CAS  Google Scholar 

  • Gundersen G. G., Khawaja S., and Bulinski J. C. (1987) Post-polymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules.J. Cell Biol. 105, 251–264.

    PubMed  CAS  Google Scholar 

  • Gustke N., Steiner B., Mandelkow E. M., Biernat J., Meyer H. E., Goedert M., and Mandelkow E. (1992) Tau protein-microtubule binding decreases upon Alzheimer-like phosphorylation at ser-pro motifs.FEBS Lett. 307, 199–205.

    PubMed  CAS  Google Scholar 

  • Haass C., Hung A. Y., and Selkoe D. J. (1991) Processing of β-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion.J. Neurosci. 11, 3783–3793.

    PubMed  CAS  Google Scholar 

  • Haass C., Schlossmacher M. G., Hung A. Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B. L., Lieberburg I., Koo E. H., Schenk D., Teplow D. B., and Selkoe D. J. (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism.Nature 359, 322–325.

    PubMed  CAS  Google Scholar 

  • Halpain S. and Greengard P. (1990) Activation of NMDA receptors induces rapid dephosphorylation of the cytoskeletal protein MAP2.Neuron 5, 237–246.

    PubMed  CAS  Google Scholar 

  • Halpain S. and Greengard P. (1992) Protein dephosphorylation as a mediator of NMDA receptor signal transduction, inExcitatory Amino Acids and Second Messenger Systems (Teichberg V. I. and Turski L., eds.)., Springer-Verlag, Berlin, pp. 121–142.

    Google Scholar 

  • Hansen L., Slamon D., Galasko D., Masliah E., Katzman R., DeTeresa R., Thal L., Pay M. M., Hofstetter R., Klauber M., Rice V., Butters N., and Alford M. (1990) The Lewy body variant of Alzheimer's disease: a clinical and pathologic entity.Neurology 40, 1–8.

    PubMed  CAS  Google Scholar 

  • Hart C. E., Nuckolls G. H., and Wood J. G. (1987) Subcellular compartmentalization of phosphorylated neurofilament polypeptides in neurons.Cell Motil. Cytoskel. 7, 393–403.

    CAS  Google Scholar 

  • Heidemann S. R., Landers J. M., and Hamborg M. A. (1981) Polarity orientation of axonal microtubules.J. Cell Biol. 91, 661–665.

    PubMed  CAS  Google Scholar 

  • Hill W. D., Lee V. M.-Y., Hurtig, H. I., Murray J. M., and Trojanowski J. Q. (1991) Epitopes located in spatially separate domains of each neurofilament subunit are present in Parkinson's disease Lewy Bodies.J. Comp. Neurol. 309, 150–160.

    PubMed  CAS  Google Scholar 

  • Himmler A., Drechsel D., Kirschner M., and Martin D. W., Jr. (1989) Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains.Mol. Cell Biol. 9, 1381–1388.

    PubMed  CAS  Google Scholar 

  • Hirokawa N. (1982) Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by the quckfreeze, deep-etch method.J. Cell Biol. 94, 129–142.

    PubMed  CAS  Google Scholar 

  • Hirokawa N., Glicksman M. A., and Willard M. B. (1984) Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton.J. Cell Biol. 98, 1523–1536.

    PubMed  CAS  Google Scholar 

  • Hirokawa N., Bloom G. S., and Vallee R. B. (1985) Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the β,β′-iminodipropionitrile-intoxicated axon as a model system.J. Cell Biol. 101, 227–239.

    PubMed  CAS  Google Scholar 

  • Hirokawa N., Hisanaga S. I., and Shiomura Y. (1988a) MAP2 is a component of crossbridges between microtubules and neurofilaments in the neuronal cytoskeleton: quick-freeze, deep-etch immunoelectron microscopy and reconstitution studies.J. Neurosci.8, 2769–2779.

    PubMed  CAS  Google Scholar 

  • Hirokawa N., Shiomura Y., and Okabe S. (1988b) Tau proteins: the molecular structure and mode of binding on microtubules.J. Cell Biol. 107, 1449–1459.

    PubMed  CAS  Google Scholar 

  • Hisanaga S. I. and Hirokawa N. (1988) Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing.J. Mol. Biol. 20, 297–305.

    Google Scholar 

  • Hisanaga S. I. and Hirokawa N. (1989) The effects of dephosphorylation on the structure of the projections of neurofilament.J. Neurosci. 9, 959–966.

    PubMed  CAS  Google Scholar 

  • Hoffman P. N. and Lasek R. J. (1975) The slow component of axonal transport: identification of the major structural polypeptides of the axon and their generality among mammalian neurons.J. Cell Biol. 66, 351–366.

    PubMed  CAS  Google Scholar 

  • Holtzman D. M., Li Y., DeArmond S. J., McKinley M. P., Gage F. H., Epstein C. J., and Mobley W. C. (1992) Mouse model of neurodegeneration: atrophy of basal forebrain cholinergic neurons in trisomy 16 transplants.Proc. Natl. Acad. Sci. USA 89, 1383–1387.

    PubMed  CAS  Google Scholar 

  • Hoshi M., Nishida E., Inagaki M., Gotoh Y., and Sakai H. (1990) Activation of a serine/threonine kinase that phosphorylates microtubule-associated protein 1B in vitro by growth factors and phorbol esters in quiescent rat fibroblastic cells.Eur. J. Biochem. 193, 513–519.

    PubMed  CAS  Google Scholar 

  • Hsiao K. K., Scott M., Foster D., Groth D. F., DeArmond J., and Prusiner S. B. (1990) Spontaneous neurodegeneration in transgenic mice with mutant prion protein.Science 250, 1587–1590.

    PubMed  CAS  Google Scholar 

  • Huber G. and Matus A. (1984) Immunocytochemical localization of microtubule-associated protein 1 in rat cerebellum using monoclonal antibodies.J. Cell Biol. 98, 777–781.

    PubMed  CAS  Google Scholar 

  • Hugon J. and Vallat J. M. (1990) Abnormal distribution of phosphorylated neurofilaments in neuronal degeneration induced by kainic acid.Neurosci. Lett. 119, 45–48.

    PubMed  CAS  Google Scholar 

  • Ihara Y. (1988) Massive somatodendritic sprouting of cortical neurons in Alzheimer's disease.Brain Res. 459, 138–144.

    PubMed  CAS  Google Scholar 

  • Johnson G. V. W., Watson A. L., Lartius R, Uemura E., and Jope R. S. (1992) Dietary aluminum selectively decreases MAP-2 in brains of developing and adult rats.Neurotoxicology 13, 463–474.

    PubMed  CAS  Google Scholar 

  • Joly J. C., Flynn G., and Purich D. L. (1989) The microtubule-binding fragment of microtubule-associated protein-2: location of the protease-accessible site and identification of an assembly-promoting peptide.J. Cell Biol. 109, 2289–2294.

    PubMed  CAS  Google Scholar 

  • Jucker M., Walker L. C., Martin L. J., Kitt C. A., Kleinman H. K., Ingram D. K., and Price D. L. (1992) Age-associated inclusions in normal and transgenic mouse brain.Science 255, 1443–1445.

    PubMed  CAS  Google Scholar 

  • Julien J.-P. and Mushynski W. E. (1982) Multiple phosphorylation sites in mammalian neurofilament polypeptides.J. Biol. Chem. 257, 10,467–10,470.

    CAS  Google Scholar 

  • Julien J.-P. and Mushynski W. E. (1983) The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments.J. Biol. Chem. 258, 4019–4025.

    PubMed  CAS  Google Scholar 

  • Kammesheidt A., Boyce F. M., Spanoyannis A. F., Cummings B. J., Ortegon M., Cotman C., Vaught J. L., and Neve R. L. (1992) Deposition of β/A4 immunoreactivity and neuronal pathology in transgenic mice expressing the carboxyl-terminal fragment of the Alzheimer amyloid precursor in the brain.Proc. Natl. Acad. Sci. USA 89, 10,857–10,861.

    CAS  Google Scholar 

  • Kanai Y., Takemura R., Oshima T., Mori H., Ihara Y., Yanagisawa M., Masaki T., and Hirokawa N. (1989) Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA.J. Cell Biol. 109, 1173–1184.

    PubMed  CAS  Google Scholar 

  • Kanai Y., Chen J., and Hirokawa N. (1992) Microtubule budling by tau proteins in vivo: analysis of functional domains.EMBO J. 11, 3953–3961.

    PubMed  CAS  Google Scholar 

  • Kang J., Lemaire H.-G., Unterbeck A., Salbaum J. M., Masters C. L., Grzeschik K.-H., Multhaup G., Beyreuther K., and Müller-Hill B. (1987) The precursor of Alzheimer's disease amyloid A4 protein resembles a cell surface receptor.Nature 325, 733–736.

    PubMed  CAS  Google Scholar 

  • Kaplan M. P., Chin S. S., Fliegner K. H., and Liem R. K. H. (1990) α-Internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain.J. Neurosci. 10, 2735–2748.

    PubMed  CAS  Google Scholar 

  • Katsetos C. D., Savory J., Herman M. M., Carpenter R. M., Frankfurter A., Hewitt C. D., and Wills M. R. (1990) Neuronal cytoskeletal lesions induced in the CNS by intraventricular and intravenous aluminum maltol in rabbits.Neuropathol. Appl. Neurobiol. 16, 511–528.

    PubMed  CAS  Google Scholar 

  • Kindler S., Schulz B., Goedert M., and Garner C. C. (1990) Molecular structure of microtubule-associated protein 2B and 2C from rat brain.J. Biol. Chem. 265, 19,679–19,684.

    CAS  Google Scholar 

  • Klosen P., Anderton B. H., Brion J.-P., and van den Bosch de Aguilar P. (1990) Perikaryal neurofilament phosphorylation in axotomized and 6-OH-dopamine-lesioned CNS neurons.Brain Res. 526, 259–269.

    PubMed  CAS  Google Scholar 

  • Knops J., Kosik K. S., Lee G., Pardee J. D., Cohen-Gould L., and McConlogue L. (1991) Overexpression of tau in a non-neuronal cell induces long cellular processes.J. Cell Biol. 114, 725–733.

    PubMed  CAS  Google Scholar 

  • Koliatsos V. E., Applegate M. D., Kitt C. A., Walker L. C., DeLong M. R., and Price D. L. (1989) Aberrant phosphorylation of neurofilaments accompanies transmitter-related changes in septal neurons following transection of the fimbria-fornix.Brain Res. 482, 205–218.

    PubMed  CAS  Google Scholar 

  • Kondo J., Honea T., Mori H., Hamada Y., Miura R., Ogawara M., and Ihara, Y. (1988) The carboxyl third of tau is tightly bound to paired helical filaments.Neuron 1, 827–834.

    PubMed  CAS  Google Scholar 

  • Koo E. H., Sisodia S. S., Archer D. R., Martin L. J., Weidemann A., Beyreuther K., Fisher P., Master C. L., and Price D. L. (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport.Proc. Natl. Acad. Sci. USA 87, 1561–1565.

    PubMed  CAS  Google Scholar 

  • Kosik K. S., Joachim C. L., and Selkoe D. J. (1986) Mictotubule-associated protein τ (tau) is a major antigenic component of paired helical filaments in Alzheimer disease.Proc. Natl. Acad. Sci. USA 83, 4044–4048.

    PubMed  CAS  Google Scholar 

  • Kosik K. S., Orecchio L. D., Bakalis S., Duffy L., and Neve R. L. (1988) Partial sequence of MAP2 in the region of a shared epitope with Alzheimer neurofibrillary tangles.J. Neurochem. 51, 587–598.

    PubMed  CAS  Google Scholar 

  • Kosik K. S., Crandall J. E., Mufson E. J., and Neve R. L. (1989a) Tau in situ hybridization in normal and Alzheimer brain: localization in the somatodendritic compartment.Ann. Neurol. 26, 352–361.

    PubMed  CAS  Google Scholar 

  • Kosik K. S., Orecchio L. D., Bakalis S., and Neve R. L. (1989b) Developmentally regulated expression of specific tau sequences.Neuron 2, 1389–1397.

    PubMed  CAS  Google Scholar 

  • Kosik K. S. and Caceres A. (1991) Tau protein and the establishment of an axonal morphology.J. Cell Sci. Suppl. 15, 69–74.

    PubMed  CAS  Google Scholar 

  • Kosik K. S. (1992) Tau protein and neurodegeneration.Mol. Neurobiol. 4, 171–179.

    Google Scholar 

  • Kosik K. S. (1993) The molecular and cellular biology of tau.Brain Pathol. 3, 39–43.

    PubMed  CAS  Google Scholar 

  • Kowall N. W. and Kosik K. S. (1987) Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer's disease.Ann. Neurol. 22, 639–643.

    PubMed  CAS  Google Scholar 

  • Kreis T. E. (1987) Microtubules containing detyrosinated tubulin are less dynamic.EMBO J. 6, 2597–2606.

    PubMed  CAS  Google Scholar 

  • Ksiezak-Reding H. and Yen S.-H. (1987) Two monoclonal antibodies recognize Alzheimer's neurofibrillary tangles, neurofilament and microtubule associated proteins.J. Neurochem. 48, 455–462. with tau but show distinct biochemical properties.J. Neurosci. Res. 25, 420–430.

    PubMed  CAS  Google Scholar 

  • Ksiezak-Reding H., Chien C.-H., Lee V. M.-Y., and Yen S.-H. (1990b) Mapping of the Alz 50 epitope in microtubule-associated proteins tau.J. Neurosci. Res. 25, 412–419.

    PubMed  CAS  Google Scholar 

  • Ksiezak-Reding H. and Yen S. H. (1991) Structural stability of paired helical filaments requires microtubule-binding domains of tau: a model for self-association.Neuron 6, 717–728.

    PubMed  CAS  Google Scholar 

  • Kuzuhara S., Mori H., Izumiyama N., Yoshimura M., and Ihara Y. (1988) Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study.Neuropathologica 75, 345–353.

    CAS  Google Scholar 

  • Langui D., Propst A., Anderton B., Brion J.-P., and Ulrich J. (1990) Aluminium-induced tangles in cultured rat neurons: enhanced effect of aluminium by addition of maltol.Acta Neuropathol. 80, 649–655.

    PubMed  CAS  Google Scholar 

  • LeClerc N., Kosik K. S., Cowan N., Pienkowski T. P., and Baas P. W. (1993) Process formation in Sf9 cells induced by the expression of a microtubule-associated protein 2C-like construct.Proc. Natl. Acad. Sci. USA 90, 6223–6227.

    PubMed  CAS  Google Scholar 

  • Lee V. M.-Y., Otvos L., Jr., Schmidt M. L., and Trojanowski J. Q. (1988a) Alzheimer's neurofibrillary tangles share immunological homologies with multiphosphorylation domains in the two large neurofilament proteins.Proc. Natl. Acad. Sci. USA 85, 7384–7388.

    PubMed  CAS  Google Scholar 

  • Lee G., Cowan N., and Kirschner M. (1988b) The primary structure and heterogeneity of tau protein from mouse brain.Science 239, 285–288.

    PubMed  CAS  Google Scholar 

  • Lee G., Neve R. L., and Kosik K. S. (1989) The microtubule binding domain of tau protein.Neuron 2, 1615–1624.

    PubMed  CAS  Google Scholar 

  • Lee V. M.-Y., Carden M. J., Schlaepfer W. W., and Trojanowski J. Q. (1987) Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats.J. Neurosci. 7, 3474–3488.

    PubMed  CAS  Google Scholar 

  • Lee V. M.-Y., Balin B. J., Otvos L., Jr., and Trojanowski J. (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal tau.Science 251, 675–678.

    PubMed  CAS  Google Scholar 

  • Leigh P. N., Propst A., Dale G., Power D., Brion J. P., Dodson A., and Anderton B. H. (1989) New aspects of the pathology of neurodegenerative disorders as revealed by ubiquitin antibodies.Neuropathology 79, 61–72.

    CAS  Google Scholar 

  • Leonard G. B., Gorham D. G., Cole P., Greene L. A., and Ziff E. B. (1988) A nerve growth factorregulated messenger RNA encodes a new intermediate filament protein.J. Cell Biol. 106, 181–193.

    PubMed  CAS  Google Scholar 

  • Letterier J. F., Liem R., and Shelanski M. (1982) Interactions between neurofilaments and microtubule-associated proteins: a possible mechanism for intra-organellar bridging.J. Cell Biol. 95, 982–986.

    Google Scholar 

  • Lewis S. A., Sherline P., and Cowan, N. J. (1986a) A cloned cDNA encoding MAP 1 detects a single copy gene in mouse and brain-abundant RNA whose level decreases during development.J. Cell Biol. 102, 2106–2114.

    PubMed  CAS  Google Scholar 

  • Lewis S. A., Villasante A., Sherline P., and Cowan N. J. (1986b) Brain-specific expression of MAP 2 detected using a cloned cDNA probe.J. Cell Biol. 102, 2098–2105.

    PubMed  CAS  Google Scholar 

  • Lewis S. A., Wang D., and Cowan N. J. (1988) Microtubule-associated protein MAP2 shares a microtubule-binding motif with tau protein.Science 242, 936–939.

    PubMed  CAS  Google Scholar 

  • Lewis S. A., Ivanov I. E., Lee G., and Cowan N. J. (1989) Organization of microtubules in dendrites and axons is determined by a short hydrophobic zipper in microtubule-associated proteins MAP 2 and tau.Nature 342, 498–505.

    PubMed  CAS  Google Scholar 

  • Lewis S. A. and Cowan N. J. (1990) Microtubule bundling.Nature 345, 674.

    PubMed  CAS  Google Scholar 

  • Lewy F. H. (1912) Paralysis agitans. I. Pathologische Anatomie, inHandbuch der Neurologie (Lewandowsky M., ed.), Springer, Berlin, pp. 920–933.

    Google Scholar 

  • Liem R. K. H., Chin S. S. M., Moraru E., and Wang E. (1985) Monoclonal antibodies to epitopes on different regions of the 200,000 dalton neurofilament protein.Exp. Cell Res. 156, 419–428.

    PubMed  CAS  Google Scholar 

  • Lindwall G. and Cole R. D. (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly.J. Biol. Chem. 259, 5301–5305.

    PubMed  CAS  Google Scholar 

  • Liu W.-K., Ksiezak-Reding H., and Yen S.-H. (1991) Abnormal tau proteins from Alzheimer's disease brains: purification and amino acid analysis.J. Biol. Chem. 266, 21,723–21,727.

    CAS  Google Scholar 

  • Liu W.-K., Moore W. T., Williams R. T., Hall F. L., and Yen S.-H. (1993) Application of synthetic phospho- and unphospho-peptides to identify phosphorylation sites in a subregion of the tau molecule, which is modified in Alzheimer's disease.J. Neurosci. Res. 34, 371–376.

    PubMed  CAS  Google Scholar 

  • Love S. and Nicoll J. A. R. (1992) Comparison of modified Bielschowsky silver impregnation and anti-ubiquitin immunostaining of cortical and nigral Lewy bodies.Neuropathol. Appl. Neurobiol. 18, 585–592.

    PubMed  CAS  Google Scholar 

  • Lowe, J., Mayer J. R., and Landon M. (1993) Ubiquitin in neurodegenerative diseases.Brain Pathol. 3, 55–65.

    PubMed  CAS  Google Scholar 

  • Lu Q. and Wood J. G. (1993) Functional studies of Alzheimer's disease tau protein.J. Neurosci. 13, 508–515.

    PubMed  CAS  Google Scholar 

  • Masters C. L., Multhaup G., Simms G., Pottgiesser J., Martins R. N., and Beyreuther K. (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels.EMBO J. 4, 2757–2763.

    PubMed  CAS  Google Scholar 

  • Matus A., Bernhardt R., and Hugh-Jones T. (1981) High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain.Proc. Natl. Acad. Sci. USA 78, 3010–3014.

    PubMed  CAS  Google Scholar 

  • Matus A. (1988) Microtubule-associated proteins: their potential role in determining neuronal morphology.Ann. Rev. Neurosci. 11, 29–44.

    PubMed  CAS  Google Scholar 

  • Matus A. (1991) Microtubule-associated proteins and neuronal morphogenesis.J. Cell Sci. Suppl. 15, 61–67.

    PubMed  CAS  Google Scholar 

  • Mercken M., Vandermeeren M., Lübke U., Six J., Boons J., Van de Voorde A., Martin J.-J., and Gheuens J. (1992) Monoclonal antibodies with selective specificity for Alzheimer tau are directed against phosphatase-sensitive epitopes.Acta Neuropathol. 84, 265–272.

    PubMed  CAS  Google Scholar 

  • Migheli A., Butler M., Brown K., and Shelanski M. L. (1988) Light and electron microscope localization of the microtubule-associated protein tau in rat brain.J. Neurosci. 8, 1846–1851.

    PubMed  CAS  Google Scholar 

  • Miller P., Walter V., Therkauf W. E., Vallee R. B., and DeCamilli P. (1982) Frozen tissue sections as an experimental system to reveal specific binding sites for the regulatory subunit of type II cAMP-dependent protein kinase in neurons.Proc. Natl. Acad. Sci. USA 79, 5562–5566.

    PubMed  CAS  Google Scholar 

  • Miller C., Brion J.-P., Calvert R., Chin T. K., Eagles P. A. M., Downes M. J., Flament-Durant J., Haugh M., Kahn J., Propst A., Ulrich J., and Anderton B. H. (1986) Alzheimer paired helical filaments share epitopes with neurofilament sidearms.EMBO J. 5, 269–276.

    PubMed  CAS  Google Scholar 

  • Monaco S., Wongmongkolrit T., Shearson C. M., Patton A., Schaetzle B., Autilio-Gambetti L., Gambetti P., and Sayre L. M. (1990) Giant axonopathy characterized by intermediate location of axonal enlargements and acceleration of neurofilament transport.Brain Res. 519, 73–81.

    PubMed  CAS  Google Scholar 

  • Morishima-Kawashima M., Hasegawa M., Takio K., Suzuki M., Titani K., and Ihara Y. (1993) Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments.Neuron 10, 1151–1160.

    PubMed  CAS  Google Scholar 

  • Muma N. A., Troncoso J. C., Hoffman P. N., Koo E. H., and Price D. L. (1988) Aluminum neurotoxicity: altered expression of cytoskeletal genes.Mol. Brain Res. 3, 115–122.

    CAS  Google Scholar 

  • Neve R. L., Harris P., Kosik K. S., Kurnit D. M., and Donlon T. A. (1986) Identification of cDNA clones for the human microtubule-associated protein, tau, and chromosomal localization of the genes for tau and microtubule-associated protein 2.Mol. Brain Res. 1, 271–280.

    CAS  Google Scholar 

  • Neve R. L., Kammesheidt A., and Hohmann C. F. (1992) Brain transplants of cells expressing the carboxyl-terminal fragment of the Alzheimer amyloid protein precursor cause specific neuropathology in vivo.Proc. Natl. Acad. Sci. USA 89, 3448–3452.

    PubMed  CAS  Google Scholar 

  • Nixon R. A., Clarke J. F., Logvinenko K. B., Tan M. K. H., Hoult M., and Grynspan F. (1990) Aluminum inhibits calpain-mediated proteolysis and induces human neurofilament proteins to form protease-resistant high molecular weight complexes.J. Neurochem. 55, 1950–1959.

    PubMed  CAS  Google Scholar 

  • Nixon R. A. and Sihag R. K. (1991) Neurofilament phosphorylation: a new look at regulation and function.Trend. Neurosci. 14, 501–506.

    PubMed  CAS  Google Scholar 

  • Nixon R. A. (1993) The regulation of neurofilament protein dynamics by phosphorylation: clues to neurofibrillary pathobiology.Brain Pathol. 3, 29–38.

    PubMed  CAS  Google Scholar 

  • Noble M., Lewis S. A., and Cowan N. J. (1989) The microtubule binding domain of microtubule-associated protein MAP1B contains a repeated sequence motif unrelated to that of MAP2 and tau.J. Cell Biol. 109, 3367–3376.

    PubMed  CAS  Google Scholar 

  • Nukina N. and Ihara Y. (1986) One of the antigenic determinants of paired helical filaments is related to tau protein.J. Biochem. 99, 1541–1544.

    PubMed  CAS  Google Scholar 

  • Nunez J. (1988) Immature and mature variants of MAP and tau proteins and neuronal plasticity.Trends Neurosci. 11, 477–479.

    PubMed  CAS  Google Scholar 

  • Oblinger M. M., Argasinski A., Wong J., and Kosik K. S. (1991) Tau gene expression in DRG neurons during development and regeneration.J. Neurosci. 11, 2453–2459.

    PubMed  CAS  Google Scholar 

  • Ohtsubo K., Izumiyama N., Kuzuhara S., Mori H., and Shimada H. (1990) Curly fibers are tau-positive strands in the pre- and post-synaptic neurites, consisting of paired helical filaments: observations by the freeze-etch and replica method.Acta Neuropathol. 81, 111–115.

    PubMed  CAS  Google Scholar 

  • Oltersdorf T., Fritz L. C., Schenk D. B., Lieberburg I., Johnson-Wood K. L., Beattie E. C., Ward P. J., Blacher R. W., Dovey H. F., and Sinha S. (1989) The secreted form of the Alzheimer's amyloid precursor protein with the Kunitz domain is a protease nexin-II.Nature 341, 144–147.

    PubMed  CAS  Google Scholar 

  • Papasozomenos S. Ch. and Binder L. I. (1987) Phosphorylation determines two distinct species of tau in the central nervous system.Cell Motil. Cytoskeleton 8, 210–226.

    PubMed  CAS  Google Scholar 

  • Peng I., Binder L. I., and Black M. M. (1986) Biochemical and immunological analysis of cytoskeletal domains of neurons.J. Cell Biol. 102, 252–262.

    PubMed  CAS  Google Scholar 

  • Perry R. H., Irving D., Blessed G., Fairbairn A., and Perry E. K. (1990) Senile dementia of Lewy body type: a clinically and neuropathologically distinct form of Lewy body dementia in the elderly.J. Neurol. Sci. 95, 119–139.

    PubMed  CAS  Google Scholar 

  • Perry G., Kawai M., Tabaton M., Onorato M., Mulvihill P., Richey P., Morandi A., Connolly J. A., and Gambetti P. (1991) Neuropil threads of Alzheimer's disease show a marked alteration of the normal cytoskeleton.J. Neurosci. 11, 1748–1755.

    PubMed  CAS  Google Scholar 

  • Piperno G. and Fuller M. T. (1985) Monoclonal antibodies specific for an acetylated form of α-tubulin recognize antigens in cilia and flagella from a variety of organisms.J. Cell Biol. 101, 2085–2094.

    PubMed  CAS  Google Scholar 

  • Ponte P., Gonzalez-De Whitt P., Schilling J., Miller J., Hsu D., Greenberg B., Davis K., Wallace W., Lieberburg I., Fuller F., and Cordell B. (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors.Nature 331, 525–537.

    PubMed  CAS  Google Scholar 

  • Propst F., Rosenberg M. P., Cork L. C., Kovatch R. M., Rauch S., Westphal H., Khillan J., Schulz N. T., VandeWoude G. F., and Newmann P. E. (1990) Neuropathological changes in transgenic mice carrying copies of a transcriptionally activated Mos protooncogene.Proc. Natl. Acad. Sci. USA 87, 9703–9707.

    PubMed  CAS  Google Scholar 

  • Quinn P. N. and Steiger M. J. (1991) Parkinson's disease: clinical and therapeutic aspects.Curr. Opin. Neurol. Neurosurg. 4, 331–336.

    Google Scholar 

  • Quon D., Wang Y., Catalano R., Scardina J. M., Murakami K., and Cordell B. (1991) Formation of β-amyloid protein deposits in brains of transgenic mice.Nature 352, 239–241.

    PubMed  CAS  Google Scholar 

  • Richards S.-J., Waters J. J., Beyreuther K., Masters C. L., Wischik C. M., Sparkman D. R., White C. L., Abraham C. R., and Dunnett S. B. (1991) Transplants of mouse trisomy 16 hippocampus provide a model of Alzheimer's disease neuropathology.EMBO J. 10, 297–303.

    PubMed  CAS  Google Scholar 

  • Riederer B. and Matus A. (1985) Differential expression of distinct microtubule-associated proteins during brain development.Proc. Natl. Acad. Sci. USA 82, 6006–6009.

    PubMed  CAS  Google Scholar 

  • Riederer B., Cohen R., and Matus A. (1986) MAP5: a novel brain microtubule-associated protein under strong developmental regulation.J. Neurocytol. 15, 763–775.

    PubMed  CAS  Google Scholar 

  • Riederer B., Guadano-Ferraz A., and Innocenti G. M. (1991) Differences in distribution of microtubule-associated proteins 5a and 5b during development of cerebral cortex and corpus callosum in cats: dependence on phosphorylation.Dev. Brain Res. 56, 235–243.

    Google Scholar 

  • Rosenblum J. S., Bramblett G. T., and Lee V. M.-Y. (1990) The selective phosphorylation of sites near the microtubule binding domain in normal tau may be an initial event leading to the formation of Alzheimer disease (AD) paired helical filaments (PHF).J. Cell Biol. 111, 435a.

    Google Scholar 

  • Rosenfeld J., Dorman M. E., Griffin J. W., Sternberger L. A., Sternberger N. H., Price D. L., and Gold B. G. (1987) Distribution of neurofilament antigens after axonal injury.J. Neuropathol. Exp. Neurol. 46, 269–282.

    PubMed  CAS  Google Scholar 

  • Safaei R. and Fischer I. (1989) Cloning of a cDNA encoding MAP1B in rat brain: regulation of mRNA levels during development.J. Neurochem. 15, 763–775.

    Google Scholar 

  • Sato-Yoshitake R., Shiomura Y., Miyasaka H., and Hirokawa N. (1989) Microtubule-associated protein 1B: molecular structure, localization, and phosphorylation-dependent expression in developing neurons.Neuron 3, 229–238.

    PubMed  CAS  Google Scholar 

  • Sayre L. M., Autilio-Gambetti L., and Gambetti P. (1985) Pathogenesis of experimental giant neuro-filamentous axonopathies: a unified hypothesis based on chemical modification of neurofilaments.Brain Res. Rev. 10, 69–83.

    CAS  Google Scholar 

  • Schubert W., Prior R., Weidemann A., Dircksen H., Multhaup G., Masters C. L., and Beyreuther K. (1991) Localization of Alzheimer βA4 amyloid precursor protein at cell and peripheral synaptic sites.Brain Res. 563, 184–194.

    PubMed  CAS  Google Scholar 

  • Selkoe D. J., Liem R. K. H., Yen S.-H., and Shelanski M. L. (1979) Biochemical and immunological characterization of neurofilaments in experimental neurofibrillary degeneration induced by aluminum.Brain Res. 163, 235–252.

    PubMed  CAS  Google Scholar 

  • Selkoe D. J., Abraham C. R., Podlisny M. B., and Duffy L. K. (1986) Isolation of low-molecular-weight proteins from amyloid plaque fibers in Alzheimer's disease.J. Neurochem. 46, 1820–1834.

    PubMed  CAS  Google Scholar 

  • Seubert P., Vigo-Pelfrey C., Esch F., Lee M. G., Dovey H., Davis D. L., Sinha S., Schlossmacher M., Whaley J., Swindlehurst C., McCormack R., Wolfert R., Selkoe D. J., Lieberburg I., and Schenk D. B. (1992) Isolation and quantitation of soluble Alzheimer's β-peptide from biological fluids.Nature 359, 325–327.

    PubMed  CAS  Google Scholar 

  • Seubert P., Oltersdorf T., Lee M. G., Barbour R., Blomquist C., Davis D. L., Bryant K., Fritz L. C., Galasko D., Thal L. J., Lieberburg I., and Schenk D. B. (1993) Secretion of β-amyloid precursor protein cleaved at the amino terminus of the β-amyloid peptide.Nature 361, 260–263.

    PubMed  CAS  Google Scholar 

  • Shin R.-W., Bramblett G. T., Lee V. M.-Y., and Trojanowski J. Q. (1993) Alzheimer disease A68 proteins injected into rat brain induce codeposits of β-amyloid, ubiquitin, and α1-antichymotrypsin.Proc. Natl. Acad. Sci. USA 90, 6825–6828.

    PubMed  CAS  Google Scholar 

  • Shiomura Y. and Hirokawa N. (1987) The molecular structure of microtubule-associated protein 1A (MAP1A) in vivo, and in vitro. An immunoelectron microscopy and quick-freeze, deep-etch study.J. Neurosci. 7, 1461–1469.

    PubMed  CAS  Google Scholar 

  • Shoji M., Golde T. E., Ghiso J., Cheung T. T., Estus S., Shaffa L. M., Cai X.-D., McKay D. M., Tintner R., Frangione B., and Younkin S. G. (1992) Production of the Alzheimer amyloid β protein by normal proteolytic processing.Science 258, 126–129.

    PubMed  CAS  Google Scholar 

  • Simchowicz T. (1911) Sur la signification des plaques séniles et sur la formule sénile de l'écorce cérébrale.Revue Neurologique 1, 221–227.

    Google Scholar 

  • Sisodia S. S., Koo E. H., Beyreuther K., and Unterbeck A. (1990) Evidence that beta-amyloid protein in Alzheimer's disease is not derived by normal processing.Science 248, 492–495.

    PubMed  CAS  Google Scholar 

  • Sisodia S. S., Koo E. H., Hoffman P. N., Perry G., and Price D. L. (1993) Identification and transport of full-length amyloid precursor proteins in rat peripheral nervous system.J. Neurosci. 13, 3136–3142.

    PubMed  CAS  Google Scholar 

  • Sternberger L. A. and Sternberger N. H. (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ.Proc. Natl. Acad. Sci. USA 80, 6162–6170.

    Google Scholar 

  • Sternberger N. H., Sternberger L. A., and Ulrich J. (1985) Aberrant neurofilament phosphorylation in Alzheimer disease.Proc. Natl. Acad. Sci. USA 82, 4274–4276.

    PubMed  CAS  Google Scholar 

  • Szendrei G. I., Lee V. M.-Y., and Otvos L., Jr. (1993) Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location.J. Neurosci. Res. 34, 243–249.

    PubMed  CAS  Google Scholar 

  • Tabaton M., Cammarata S., Mancardi G., Manetto V., Autilio-Gambetti L., Perry G., and Gambetti P. (1991) Ultrastructural localization of β-amyloid, τ, and ubiquitin epitopes in extracellular neurofibrillary tangles.Proc. Natl. Acad. Sci. USA 88, 2098–2102.

    PubMed  CAS  Google Scholar 

  • Takeda M., Tatebayashi Y., Tanimukai S., Nakamura Y., Tanaka T., and Nishimura T. (1991) Immunohistochemical study of microtubule-associated protein 2 and ubiquitin in chronically aluminum-intoxicated rabbit brain.Acta Neuropathol. 82, 346–352.

    PubMed  CAS  Google Scholar 

  • Taleghany N. and Oblinger M. M. (1992) Regional distribution and biochemical characteristics of high molecular weight tau in the nervous system.J. Neurosci. Res. 33, 257–265.

    PubMed  CAS  Google Scholar 

  • Tanzi R. E., McClatchey A. J., Lamperti E. D., Villa-Komaroff L., Gusella J. F., and Neve R. L. (1988) Protease inhibitor domain encoded by an amyloid precursor mRNA associated with Alzheimer's disease.Nature 331, 528–530.

    PubMed  CAS  Google Scholar 

  • Theurkauf W. and Vallee R. B. (1983) Extensive cAMP-dependent and cAMP-independent phosphorylation of microtubule associated protein 2.J. Biol. Chem. 258, 7883–7886.

    PubMed  CAS  Google Scholar 

  • Trojanowski J. Q., Schuck T., Schmidt L. M., and Lee V. M.-Y. (1989) Distribution of tau proteins in the normal human central and peripheral nervous system.J. Histochem. Cytochem. 37, 209–215.

    PubMed  CAS  Google Scholar 

  • Troncoso J. C., Price D. L., Griffin J. W., and Parhad I. M. (1982) Neurofibrillary axonal pathology in aluminum intoxication.Ann. Neurol. 12, 278–283.

    PubMed  CAS  Google Scholar 

  • Troncoso J. C., Hoffman P. N., Griffin J. W., Hess-Kozlow K. M., and Price D. L. (1985) Aluminum intoxication: a disorder of neurofilament transport in motor neurons.Brain Res. 342, 172–175.

    PubMed  CAS  Google Scholar 

  • Troncoso J. C., Sternberger N. H., Sternberger L. A., Hoffman P. N., and Price D. L. (1986) Immunocytochemical studies of neurofilament antigens in the neurofibrillary pathology induced by aluminum.Brain Res. 364, 295–300.

    PubMed  CAS  Google Scholar 

  • Troncoso J. C., March J. L., Häner M., and Aebi U. (1990) Effect of aluminum and other multivalent cations on neurofilamentsin vitro: an electron microscopic study.J. Struct. Biol. 103, 2–12.

    PubMed  CAS  Google Scholar 

  • Tsao H., Aletta J. M., and Greene L. A. (1990) Nerve growth factor and fibroblast growth factor selectively activate a protein kinase thatphosphorylates high molecular weight microtubule-associated proteins.J. Biol. Chem. 265, 15,471–15,480.

    CAS  Google Scholar 

  • Tsuyama S., Bramblett G. T., Huang K.-P., and Flavin M. (1986) A calcium/phospholipid-dependent kinase recognizes sites in microtubule associated protein 2 which are phosphorylated in living brain and are not accessible to other kinases.J. Biol. Chem. 261, 4110–4116.

    PubMed  CAS  Google Scholar 

  • Tsuyama S., Terayama Y., and Matsuyana S. (1987) Numerous phosphates of microtubule-associated protein 2 in living rat brain.J. Biol. Chem. 262, 10,886–10,892.

    CAS  Google Scholar 

  • Tucker R. P., Binder L. I., Viereck C., Hemmings B. A., and Matus A. (1988) The sequential appearance of low- and high-molecular weight forms of MAP2 in the developing cerebellum.J. Neurosci. 8, 4503–4512.

    PubMed  CAS  Google Scholar 

  • Uéda K., Masliah E., Saitoh T., Bakalis S. L., Scoble H., and Kosik K. S. (1990) Alz-50 recognizes a phosphorylated epitope of tau protein.J. Neurosci. 10, 3295–3304.

    PubMed  Google Scholar 

  • Vermersch P., Frigard B., and Delacourte A. (1992) Mapping of neurofibrillary degeneration in Alzheimer's disease: evaluation of heterogeneity using the quantification of abnormal tau proteins.Acta Neuropathol. 85, 48–54.

    PubMed  CAS  Google Scholar 

  • Wakayama I., Nerurkar V. R., and Garruto R. M. (1993) Immunocytochemical and ultrastructural evidence of dendritic degeneration in motor neurons of aluminum-intoxicated rabbits.Acta Neuropathol. 85, 122–128.

    PubMed  CAS  Google Scholar 

  • Watson D. F., Griffin J. W., Fittro K. P., and Hoffman P. N. (1989) Phosphorylation-dependent immunoreactivity of neurofilaments increases during axonal maturation and β,β′-iminodipropionitrile intoxication.J. Neurochem. 53, 1818–1829.

    PubMed  CAS  Google Scholar 

  • Weingarten M. D., Lockwood A. H., Hwo S.-Y., and Kirschner M. W. (1975) A protein factor essential for microtubule assembly.Proc. Natl. Acad. Sci. USA 72, 1858–1862.

    PubMed  CAS  Google Scholar 

  • Willard M. and Simon C. (1981) Antibody decoration of neurofilaments.J. Cell Biol. 89, 198–205.

    PubMed  CAS  Google Scholar 

  • Wille H., Drewes G., Biernat J., Mandelkow E. M., and Mandelkow E. (1992a) Alzheimer-like paired helical filaments and anti-parallel dimers formed from microtubule-associated protein tau in vitro.J. Cell Biol. 118, 573–584.

    PubMed  CAS  Google Scholar 

  • Wille H., Mandelkow E. M., Dingus J., Vallee R. B., Binder L. I., and Mandelkow E. (1992b) Domain structure and antiparallel dimers of microtubule-associated protein 2 (MAP2).J. Struct. Biol. 108, 49–61.

    PubMed  CAS  Google Scholar 

  • Wirak D. O., Bayney R., Ramabhadran T. V., Fracasso R. P., Hart J. T., Hauer P. E., Hsiau P., Pekar S. K., Scangos G. A., Trapp B. D., and Unterbeck A. J. (1991) Deposits of amyloid β protein in the central nervous system of transgenic mice.Science 253, 323–325.

    PubMed  CAS  Google Scholar 

  • Wischik C. M., Novak M., Thogersen H. C., Edwards P. C., Runswick M. J., Jakes R., Walker J. E., Milstein C., Roth M., and Klug A. (1988a) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease.Proc. Natl. Acad. Sci. USA 85, 4506–4510.

    PubMed  CAS  Google Scholar 

  • Wischik C. M., Novak M., Edwards P. C., Klug A., Tichelaar W., and Crowther R. A. (1988b) Structural characterization of the core of the paired helical filament of Alzheimer disease.Proc. Natl. Acad. Sci. USA 85, 4884–4888.

    PubMed  CAS  Google Scholar 

  • Wolozin B. L., Pruchnicki A., Dickson D. W., and Davies P. (1986) A neuronal antigen in the brains of Alzheimer patients.Science 232, 648–650.

    PubMed  CAS  Google Scholar 

  • Wood J. G., Mirra S. S., Pollock N. J., and Binder L. I. (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau.Proc. Natl. Acad. Sci. USA 83, 4040–4043.

    PubMed  CAS  Google Scholar 

  • Yamaguchi H., Ishiguro K., Shoji M., Yamazaki T., Nakazato Y., Ihara Y., and Hirai S. (1990) Amyloid β/A4 protein precursor is bound to neurofibrillary tangles in Alzheimer-type dementia.Brain Res. 537, 318–322.

    PubMed  CAS  Google Scholar 

  • Yamaguchi H., Yamazaki T., Ishiguro K., Shoji M., Nakazato Y., and Hirai S. (1992) Ultrastructural localization of Alzheimer amyloid β/A4 protein precursor in the cytoplasm of neurons and senile plaque-associated astrocytes.Acta Neuropathol. 85, 15–22.

    PubMed  CAS  Google Scholar 

  • Yen S.-H., Dickson D. W., Crowe A., Butler M., and Shelanski M. L. (1987) Alzheimer neurofibrillary tangles contain unique epitopes in common with heat-stable microtubule associated proteins tau and MAP2.Am. J. Pathol. 126, 81–91.

    PubMed  CAS  Google Scholar 

  • Zang H., Sternberger N. H., Rubinstein L. J., Herman M. M., Binder L. I., and Sternberger L. A. (1989) Abnormal processing of multiple proteins in Alzheimer disease.Proc. Natl. Acad. Sci. USA 86, 8045–8049.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doering, L.C. Probing modifications of the neuronal cytoskeleton. Mol Neurobiol 7, 265–291 (1993). https://doi.org/10.1007/BF02769179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02769179

Index Entries

Navigation