Skip to main content
Log in

Chemical bond and electronic structure anisotropies in the graphitic and rhombohedral modifications of boron nitride

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The pseudopotential method is used to calculate the band spectra, valence charge densities, and electroneutrality levels in the graphitic (h-BN) and rhombohedral (r-BN) modifications of boron nitride. It is shown that these compounds are indirect-band insulators with the minimum energies of the indirect (4.65 and 4.8 eV) and direct (5.27 and 5.5 eV) forbidden zones in h- and r-BN, respectively. The band energies of h-BN correlate well with the experimental data. Both crystals are characterized by ionic-covalent chemical bonds. In the plane of hexagonal layers, the bonds are more covalent in h-BN. In h- and r-BN, the electroneutrality levels correspond to the energy of about 1.9 eV over the top of the valence band, which is responsible for the hole conductivity of the substances. In superlattices based on these compounds, the rhombohedral phase is a quantum well for holes and a barrier for electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. I. Buzhinskij, V. V. Lopatin, and B. N. Sharupin,J. Nucl. Mater.,196-198, 1118 (1992).

    Article  CAS  Google Scholar 

  2. A. Zunger, A. Katzier, and A. Halperin,Phys. Rev.,B13, 5560 (1976).

    Google Scholar 

  3. D. M. Hoffman, G. L. Doll, and P. C. Eklund,Phys. Rev.,B30, 6051 (1984).

    Google Scholar 

  4. S. Larach and R. Shrader,Phys. Rev.,104, 68 (1956).

    Article  CAS  Google Scholar 

  5. R. Leapman, P. Fejes, and J. Silcox,Phys. Rev.,B28, 2361 (1983).

    Google Scholar 

  6. C. Tarrioo and S. Schnatterly,Phys. Rev.,B40, 7852 (1989).

    Google Scholar 

  7. R. Mamy, J. Thomas, G. Jezequel, and J. C. Lamonnier,J. Phys. Lett.,42, L473 (1981).

    Article  Google Scholar 

  8. V. A. Fomichev,Fiz. Tverd. Tela,13, 907 (1971).

    CAS  Google Scholar 

  9. E. Tegeler, N. Kosuch, G. Wiech, and A. Faessler,Phys. Status Solidi (b),91, 223 (1979).

    Article  CAS  Google Scholar 

  10. M. S. Nakhmanson and V. P. Smirnov,Fiz. Tverd. Tela,13, 3288 (1971).

    CAS  Google Scholar 

  11. A. Cattelani, M. Posternak, A. Baldereschi, and A. J. Freeman,Phys. Rev.,B36, 6105 (1987).

    Google Scholar 

  12. K.-T. Park, K. Terakura, and N. Hamada,J. Phys.,C20, 1241 (1987).

    Google Scholar 

  13. E. Doni and G. P. Parravicini,Niovo Cimento,64B, 117 (1969).

    Google Scholar 

  14. J. Robertson,Phys. Rev.,B29, 2131 (1984).

    Google Scholar 

  15. Y. N. Xu and W. Y. Ching,Phys. Rev.,B44, 7787 (1991).

    Google Scholar 

  16. O. V. Boev and S. E. Kulkova,Fiz. Tverd. Tela,34, 2218 (1992).

    CAS  Google Scholar 

  17. X. Blase, A. Ruber, S. G. Louie, and M. L. Cohen,Phys. Rev.,B51, 6868 (1995).

    Google Scholar 

  18. G. Loupias, R. Wentzcovich, L. Bellaiche, et al.,Phys. Rev.,B49, 13342 (1994).

    Google Scholar 

  19. S. N. Grinyaev and V. V. Lopatin,Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 27 (1992).

  20. A. J. Lukomskii, V.-B. Shipilo, and L. M. Gameza,J. Appl. Spectrosc.,57, 607 (1993).

    Article  Google Scholar 

  21. L. L. Smith and R. F. Davis, in:Properties of Group III Nitrides, J. Edgar (ed.), Publ. IEE, London (1994), p. 288.

    Google Scholar 

  22. K. A. Mader and A. Zunger,Phys. Rev.,B50, 17393 (1994).

    Google Scholar 

  23. V. A. Chaldyshev and S. N. Grinyaev,Izv. Vyssh. Uchebn. Zaved., Fiz.,26, 38 (1983).

    CAS  Google Scholar 

  24. V. V. Lopatin, in:Properties of Group III Nitrides, J. Edgar (ed.), Publ. IEE, London (1994), p. 89.

    Google Scholar 

  25. N. Troullier and J. L. Martins,Solid State Commun.,74, 613 (1990).

    Article  Google Scholar 

  26. B. L. Faifel, B. L. Gribov, A. O. Dmitrienko, and A. F. Bolshakov,Kristallografiya,31, 837 (1986).

    CAS  Google Scholar 

  27. V. V. Lopatin and V. P. Shcherbina,Zh. Strukt. Khim.,29, 134 (1989).

    Google Scholar 

  28. V. Ryzhkov, A. V. Kabyshev, and V. V. Lopatin,Zh. Anal. Khim.,46, 1181 (1991).

    Google Scholar 

  29. V. V. Lopatin and A. V. Kabyshev,Izv. Akad. Nauk SSSR, Neorg. Mater.,25, 972 (1989).

    CAS  Google Scholar 

  30. V. V. Lopatin,Fiz. Tverd. Tela,33, 1948 (1991).

    Google Scholar 

  31. D. J. Chadi and M. L. Cohen,Phys. Rev.,B8, 5747 (1973).

    Google Scholar 

  32. N. V. Agrinskaya and T. V. Mashovets,Fiz. Tekh. Poluprovodn.,28, 1505 (1994).

    CAS  Google Scholar 

  33. F. Flores and C. Tejedor,J. Phys.,C20, 145 (1987).

    Google Scholar 

  34. V. N. Brudnyi, S. N. Grinyaev, and V. E. Stepanov,Physica (B),212, 429 (1995).

    CAS  Google Scholar 

  35. V. V. Lopatin and F. V. Konusov,J. Phys. Chem. Sol,53, 847 (1992).

    Article  CAS  Google Scholar 

  36. V. S. Dedkov, A. V. Kabyshev, F. V. Konusov, et al.,Neorg. Mater.,32, 4 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromZhumal Strukturnoi Khimii, Vol. 38, No. 1, pp. 32–42, January–February, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinyaev, S.N., Lopatin, V.V. Chemical bond and electronic structure anisotropies in the graphitic and rhombohedral modifications of boron nitride. J Struct Chem 38, 25–33 (1997). https://doi.org/10.1007/BF02768803

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02768803

Keywords

Navigation