Skip to main content
Log in

Thermodynamics ofN,N,N-octylpentyldimethyl-ammonium chloride in water-urea mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Specific conductivities, densities, heat capacities, and enthalpies of dilution at 25‡C were measured forN,N,N-octylpentyldimethylammonium chloride (OPAC) in water-urea mixtures at various urea concentrations mu as functions of the surfactant concentration ms. From conductivity data, the cmc and the degree of the counterion dissociation Β of the OPAC micelles were calculated. The cmc increases linearly with increasingm u while Βvs. mu is a smooth concave curve. From the experimental thermodynamic data, the apparentY Φ and partialY 2 molar properties (volumes, heat capacities, and relative enthalpies) are derived as functions of mu andm s . The effect of urea on the dependences of the different properties on ms are discussed. From data in the premicellar region the standard partial molar volumesV 02 and heat capacitiesC 0p2 were evaluated. It was observed thatV 02 increases linearly withm u whileC 0p2 decreases. The properties of OPAC in the dispersed and micellized forms at the cmc were obtained and, therefore, the thermodynamic functions of micellization were calculated on the basis of the pseudo-phase transition model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Dearden and E. M. Woolley,J. Phys. Chem. 91, 2404 (1987).

    Article  CAS  Google Scholar 

  2. E. Vikingstad and O. Kvammen,J. Colloid Interface Sci. 74, 16 (1980).

    Article  CAS  Google Scholar 

  3. H. Hoiland and E. Vikingstad,J. Colloid Interface Sci. 64, 126 (1978).

    Article  Google Scholar 

  4. G. Perron, R. De Lisi, I. Davidson, S. Genereux, and J. E. Desnoyers,J. Colloid Interface Sci. 79, 432 (1981).

    Article  CAS  Google Scholar 

  5. S. Backlund, B. Bergenstal, O. Molander, and T. Warnheim,J. Colloid Interface Sci. 131, 393 (1989).

    Article  CAS  Google Scholar 

  6. L. Espada, M. N. Jones, and G. Pilcher,J. Chem. Thermodyn. 2, 1 (1970).

    Article  CAS  Google Scholar 

  7. G. Pilcher, M. N. Jones, L. Espada, and H. A. Skinner,J. Chem. Thermodyn. 1, 381 (1969).

    Article  CAS  Google Scholar 

  8. G. M. Musbally, G. Perron, and J. E. Desnoyers,J. Colloid Interface Sci. 54, 80 (1976).

    Article  CAS  Google Scholar 

  9. P. K. Singh, J. C. Ahluwalia, inSurfactants in Solution, K. L. Mittal, ed., (Plenum Press, New York, 1989).

    Google Scholar 

  10. S. Causi, R. De Lisi, S. Milioto, and N. Tirone,J. Phys. Chem. 95, 5664 (1991).

    Article  CAS  Google Scholar 

  11. E. Caponetti, S. Causi, A. M. Floriano, R. De Lisi, S. Milioto, and R. Triolo,J. Phys. Chem. 96, 4950 (1991).

    Article  Google Scholar 

  12. D.G. Archer, V. Majer, A. Inglese, and R.H. Wood,J. Colloid Inrerface Sci. 124, 591 (1988).

    Article  CAS  Google Scholar 

  13. M. Tanaka, S. Kaneshina, K. Shin-No, T. Okajima, and T. Tomida,J. Colloid Interface Sci. 46, 132 (1974).

    Article  CAS  Google Scholar 

  14. S. Milioto, S. Causi, R. Crisantino, and R. De Lisi,J. Thermal Anal. 38, 2693 (1992).

    Article  CAS  Google Scholar 

  15. S. Milioto, M. S. Bakshi, R. Crisantino, and R. De Lisi,J. Colloid Interface Sci. 159, 354 (1993).

    Article  CAS  Google Scholar 

  16. R. E. Verrall, S. Milioto, and R. Zana,J. Phys. Chem. 92, 3939 (1988).

    Article  CAS  Google Scholar 

  17. R. De Lisi, V. Turco Liveri, M. Castagnolo, and A. Inglese,J. Solution Chem. 15, 23 (1986).

    Article  Google Scholar 

  18. G. S. Kell,J. Chem. Eng. Data 12, 66 (1966).

    Article  Google Scholar 

  19. J. E. Garrod and T. M. Herrington,J. Phys. Chem. 74, 363 (1970).

    Article  CAS  Google Scholar 

  20. M. F. Stimson,Am. J. Phys. 23, 614 (1955).

    Article  CAS  Google Scholar 

  21. R. De Lisi, G. Perron, and J. E. Desnoyers,Can. J. Chem. 58, 959 (1980).

    Article  Google Scholar 

  22. C. Treiner,J. Colloid Interface Sci. 92, 444 (1982).

    Article  Google Scholar 

  23. R. Zana, S. Yiv, C. Strazielle, and P. Lianos,J. Colloid Interface Sci. 80, 208 (1981).

    Article  CAS  Google Scholar 

  24. L. Benjamin,J. Colloid Interface Sci. 22, 386 (1966).

    Article  CAS  Google Scholar 

  25. R. De Lisi, E. Fisicaro, and S. Milioto,J. Solution Chem. 17, 1015 (1988).

    Article  Google Scholar 

  26. R. N. Choudhury and J. C. Ahluwalia,J. Chem. Soc. Faraday Trans. I 77, 3119 (1981).

    CAS  Google Scholar 

  27. J. C. Ahluwalia and B. Chawla,J. Chem. Soc. Faraday Trans. I 69, 434 (1973).

    CAS  Google Scholar 

  28. T. S. Sarma and J. C. Ahluwalia,J. Phys. Chem. 76, 1366 (1972).

    Article  CAS  Google Scholar 

  29. L. L. Bright and J. R. Jezorek,J. Phys. Chem. 79, 800 (1975).

    Article  CAS  Google Scholar 

  30. J. H. Stern and J. D. Kulluk,J. Phys. Chem. 73, 2795 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lisi, R., Marongiu, B., Milioto, S. et al. Thermodynamics ofN,N,N-octylpentyldimethyl-ammonium chloride in water-urea mixtures. J Solution Chem 26, 889–911 (1997). https://doi.org/10.1007/BF02768264

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02768264

Key Words

Navigation