Skip to main content
Log in

Theoretical calculations of the ionic strength dependence of the ionic product of water based on a mean spherical approximation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A modified version of the restricted primitive model for electrolyte solutions based on the mean spherical approximation (MSA) is applied to estimate the ionic strength dependence of the ionic product of water in aqueous solutions containing different salts, which are commonly used as background electrolytes (NaCl, KCl, KNO3, and NaC104). The modification involves the use of permittivity of the solvent as concentration-dependent parameter and a single average effective diameter. This is a way of including effects originated from the solvent which do not exist in the primitive model. In the case of potassium nitrate and sodium perchlorate, a complete methodology to calculate the effective diameter and density dependence of the dielectric constant has been proposed and developed. Fits between calculated and experimental pKw values are possible over wide concentration ranges using a single adjustable parameter, namely, the average hard core diameter of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. F. H. Stillinger,Theoretical Chemistry. Advanced and Perspectives; H. Eyring, and D. Henderson, eds., (Academic Press, New York, 1978), Vol. 3, pp. 177.

    Google Scholar 

  2. Y. Guisani, B. Guillot, and S. Bratos,J. Chem. Phys. (1988);88;

  3. S. Bratos, Y. Guisani, and B. Guillot,Chemical Reactivity in Liquids: Fundamental Aspects, (Plenum Press, New York, 1988), pp 241.

    Google Scholar 

  4. G. I. Tawa and L. R. Pratt,J. Am. Chem. Soc. 117, 1625 (1995).

    Article  CAS  Google Scholar 

  5. A. Nyberg and A. D. J. Haymet, inStructure and Reactivity in Solutions C. J. Cramer, D. G. Truhlar eds. (ACS Symnphosium Series, Washington, DC, 1984), Chap. 8.

    Google Scholar 

  6. A. Warshel,J. Phys. Chem. 83, 1640 (1979).

    Article  CAS  Google Scholar 

  7. I. Kron, S. L. Marxhall, P. M. May, G. Hefler, and E. Könisberger,Monatsch. Chem. 126, 819 (1995).

    Article  CAS  Google Scholar 

  8. I. Brandariz, S. Fiol, and M. Sastre de Vicente,Ber. Bunsenges. Phys. Chem. 99, 749 (1995).

    CAS  Google Scholar 

  9. K. S. Pitzer, inActivity Coefficients in Electrolyte Solutions, 2nd edn., K. Pitzer, ed.; CRC Press: Boca Raton, Florida, 1991. Chap. 3.

    Google Scholar 

  10. G. Scatchard,J. Amer. Chem. Soc. 83, 2636 (1961).

    Article  CAS  Google Scholar 

  11. E. A. Guggenheim and J. C. Turgeon,Trans. Faraday Soc. 51, 747 1955.

    Article  CAS  Google Scholar 

  12. R. Herrero, X. L. Armesto, F. Arce, and M. Sastre de VicenteJ. Solution Chem. 21, 1185 (1992),

    Article  CAS  Google Scholar 

  13. I. Brandariz, F. Arce, X. L. Armesto, F. Penedo, and M. Sastre de VicenteMonatsh. Chem. 124, 249, (1993),

    Article  CAS  Google Scholar 

  14. R. Herrero, I. Brandariz, and M. Sastre de Vicente,Ber. Bunsen-Ges. Phys. Chem. 97, 59 (1993),

    CAS  Google Scholar 

  15. S. Fiol, I. Brandariz, R. Herrero, T. Vilariño, and M. Sastre de Vicente,Ber. Bunsen-Ges. Phys. Chem. 98, 164 (1994).

    CAS  Google Scholar 

  16. I. Brandariz, R. Herrero, and M. Sastre de VicenteJ. Chim. Phys. 90, 63 (1993),

    CAS  Google Scholar 

  17. S. Fiol, I. Brandariz, and M. Sastre de Vicente,Marine Chem. 49, 215 (1995),

    Article  CAS  Google Scholar 

  18. I. Brandariz, S. Fiol, and M. Sastre de Vicente,J. Solution Chem. 24, 1051 (1995).

    Article  Google Scholar 

  19. H. L. Friedman,A Course in Statistical Mechanics; (Prentice Hall, Englewood Cliffs, NJ, 1985).

    Google Scholar 

  20. L. Blum,Mol. Phys. 30, 1529 (1975).

    Article  CAS  Google Scholar 

  21. R. Triolo, J. R. Grigera, and L. Blum,J. Phys. Chem. 80, 1858 (1976).

    Article  CAS  Google Scholar 

  22. L. Blum, and J. S. HØye,J. Phys. Chem. 81, 1311 (1977).

    Article  CAS  Google Scholar 

  23. C. Sanchez-Castro and L. Blum,J. Phys. Chem. 93, 7478 (1989).

    Article  CAS  Google Scholar 

  24. W. Ebeling and M. Grigo,J. Solution Chem. 11, 151 (1982).

    Article  CAS  Google Scholar 

  25. T. Cartallier, P. Turq, L. Blum, and N. Condamine,J. Phys. Chem. 96, 6766 (1992).

    Article  Google Scholar 

  26. T. Vilarino, and M. Sastre de Vicente,J. Phys. Chem. 100, 16378 (1996).

    Article  CAS  Google Scholar 

  27. J. B. Hasted,Aqueous Dielectrics, (Chapman and Hall, London, 1973), Chap 6.

    Google Scholar 

  28. J. Barthel and R. Buchner,Pure Appl. Chem. 63, 1473 (1991).

    Article  CAS  Google Scholar 

  29. R. Triolo, L. Blum, and M. A. Floriano,J. Phys. Chem. 82, 1368 (1978).

    Article  CAS  Google Scholar 

  30. W. R. Fawcett and A. C. Tikanen,J. Phys. Chem. 100, 4251 (1996).

    Article  CAS  Google Scholar 

  31. J-P. Simonin, L. Blum, and P. Turq,J. Phys. Chem. 100, 7704 (1996).

    Article  CAS  Google Scholar 

  32. P. Turq, J. Barthel, and M. Chemla,Transport, Relaxation and Kinetic Processes in Electrolyte Solutions; Lectures Notes in Chemistry 57, (Springer-Verlag, Berlin, 1992) Chap 4.

    Google Scholar 

  33. R. H. Stokes, inActivity Coefficients in Electrolyte Solutions, 2nd edn., K. Pitzer, ed.; CRC Press: Boca Raton, Florida, (1991), Chap 1.

    Google Scholar 

  34. H. S. Hamed and B. B. Owen,Physical Chemistry of Electrolyte Solutions, (Rehinhold, London, 1958).

    Google Scholar 

  35. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, (Academic Press, New York, 1955).

    Google Scholar 

  36. H. L. Friedman,J. Solution Chem. 1, 387 (1972).

    Article  CAS  Google Scholar 

  37. J.-P. Simonin,J. Chem. Soc. Faraday Trans. 92, 3519 (1996).

    Article  CAS  Google Scholar 

  38. J.-P. Simonin and L. Blum,J. Chem. Soc. Faraday Trans. 92, 1533 (1996).

    Article  CAS  Google Scholar 

  39. R. C. Weast,CRC Handbook of Chemistry and Physics, 67th edn., (CRC Press, Boca Raton, FL, 1986).

    Google Scholar 

  40. I. Brandariz,Doctoral Thesis, University of La Coruña, Spain, (1994).

    Google Scholar 

  41. F. Macintyre,Marine Chem. 4, 164 (1970).

    Google Scholar 

  42. A. E. Martell and R. J. Montekakis,Determination and Use of Stability Constants. (VCH, New York, 1988), Chap. 3.

    Google Scholar 

  43. A. Albert and E. P. Serjeant,The Determination of Ionization Constants, (Chapman & Hall, New York, 1984).

    Google Scholar 

  44. H. R. Corti,J. Phys. Chem. 91, 686 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilarino, T., de Vicente, M.E.S. Theoretical calculations of the ionic strength dependence of the ionic product of water based on a mean spherical approximation. J Solution Chem 26, 833–846 (1997). https://doi.org/10.1007/BF02768261

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02768261

Key Words

Navigation