Skip to main content
Log in

Thermodynamic models for highly charged aqueous species: Solubility of Th(IV) hydrous oxide in concentrated NaHCO3 and Na2CO3 solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

An aqueous thermodynamic model is proposed to describe the solubility ofTh(IV) hydrous oxide in the aqueous Na+-HCO -3 -CO 2-3 -OH--ClO -4 -H2O system extending to high concentration at 25‡C. This model is relatively simple in that only two aqueous species are included: Th(OH)3CO -3 and Th(CO3) 6-5 . Pitzer ion interaction parameters, Β(0) and Β(l) for Na+ with Th(CO3) 6-5 , are also determined (1.31 and 30, respectively). Reconciliation of all of the experimental solubility data for Th(IV) hydrous oxide in NaClO4 media required the introduction of a large mixing parameter for the highly charged Th(CO3) -4 . The relatively large values required for the ion interaction parameters Β(0) and Β(l), together with commensurately large mixing terms with the bulk anionic species, resulted in considerable uncertainty in determining standard state equilibrium constants for the formation of the highly charged Th(CO3) 6-5 species. This uncertainty is a result of the large contributions from Β(0) and Β(l) to the excess solution free energy at the concentrations (0.1m) where this species becomes important. The magnitude of the mixing term implies that formation of this species depends strongly upon the bulk ionic media. X-ray absorption results, confirming the presence of the thorium pentacarbonate species in concentrated bicarbonate and carbonate solutions, are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Rai, A. R. Felmy, D. A. Moore, and M. J. Mason,The Solubility of Th(IV) and U(IV) Hydrous Oxides in Concentrated NaHCO3 and Na2CO3 Solutions, Materials Research Society Symposium, Vol. 353, p. 1143 (1995).

  2. D. L. Clark, S. D. Conradson, S. A. Ekberg, N. J. Hess, D. R. Janeky, M. P. Neu, P. D. Palmer, and C. D. Tait.New Journal of Chemistry 20, 211 (1996).

    CAS  Google Scholar 

  3. C. D. Tait, S. A. Eckberg, P. D. Palmer, and D. E. Morris,Plutonium Carbonate Specialion Changes as Measured in Dilute Solutions with Photoacoustic Spectroscopy, LA-12886-MS, (Los Alamos National Laboratory, Los Alamos, NM, 1995).

    Google Scholar 

  4. A. Joao, H. D. Burrows, L. Zikovsky, and M. Lipponen,Radiochim. Acta 68, 177 (1995).

    CAS  Google Scholar 

  5. E. Osthols, J. Bruno, and I. Grenthe,Geochimica et Cosmochim. Acta 58, 613 (1994).

    Article  Google Scholar 

  6. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Article  CAS  Google Scholar 

  7. K. S. Pitzer,Ion Interaction Approach: Theory and Data Correlation Activity, Chap. 3 inCoefficients in Electrolyte Solutions, 2nd edn, K. S. Pitzer ed., CRC Press, Boca Raton, FL (1991).

    Google Scholar 

  8. A. R. Felmy and J. H. Weare,Geochim. Cosmochim. Acta 50, 2771 (1986).

    Article  CAS  Google Scholar 

  9. A. R. Felmy, Dhanpat Rai, and R. W. Fulton,Am(III) Carbonato Complexes and Solubility Product of AmOHCO3(c) inPerformance Assessment Center for Engineered Barriers (PACE) Program, FY 1988 Summary Report PNC SA0865 89–001, (Power Reactor and Nuclear Fuels Development Corporation of Japan, 1989).

  10. K. S. Pitzer,J. Solution Chem. 4, 249 (1975).

    Article  CAS  Google Scholar 

  11. J. P. Greenberg, J. H. Weare, and C. E. Harvie,High Temp. Sci. 20, 1045 (1985).

    Google Scholar 

  12. C. E. Harvie, Ph.D. Dissertation #AAD82-03026, (University Microfilms, Ann Arbor, MI, 1987).

    Google Scholar 

  13. A. R. Felmy,GMIN, A Computerized Chemical Equilibrium Program Using a Constrained Minimization of the Gibbs Free Energy: Summary Report, Chap. 18 inChemical Equilibrium and Reaction Models, (Soil Science Society of America Special Publication 42, 1995).

  14. C. E. Harvie, J. P. Greenberg, and J. H. Weare,Geochim. et Cosmochim. Acta 51, 1045 (1987).

    Article  CAS  Google Scholar 

  15. C. E. Harvie,Theoretical Investigations in Geochemistry and Atom Surface Scattering, Ph.D. Dissertation, University of California, San Diego, CA, 1981.

    Google Scholar 

  16. A. R. Felmy, D. Rai, and M. J. Mason,Radiochim. Acta 55, 177 (1991).

    CAS  Google Scholar 

  17. D. Rai, J. L. Swanson, and J. L. Ryan,Radiochim. Acta 42, 35 (1987).

    CAS  Google Scholar 

  18. J. Grenthe,Chemical Thermodynamics of Uranium (NEA-OECD), (North-Holland Elsevier Sci. Publ., 19??)

  19. C. E. Harvie, N. Moller, and J. H. Weare,Geochim. Cosmochim. Acta 48, 723 (1984).

    Article  CAS  Google Scholar 

  20. P. S. Voliotis and A. Rimsky,Acta Cryst. B31, 2612 (1975).

    CAS  Google Scholar 

  21. S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller,Phys. Rev. B. 52, 2995 (1995).

    Article  CAS  Google Scholar 

  22. J. J. Rehr, S. I. Zabinsky, and R. C. Albers,Phys. Rev. Let. 69, 3397 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felmy, A.R., Rai, D., Sterner, S.M. et al. Thermodynamic models for highly charged aqueous species: Solubility of Th(IV) hydrous oxide in concentrated NaHCO3 and Na2CO3 solutions. J Solution Chem 26, 233–248 (1997). https://doi.org/10.1007/BF02767996

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02767996

Key Words

Navigation