Skip to main content
Log in

New refractory concretes and binding systems: Basic trends of development, production, and use of refractories in the 21st century. Part II. Ceramic binders and castables

  • Research
  • Published:
Refractories and Industrial Ceramics Aims and scope

Abstract

A brief review of recently obtained and studied ceramic binding systems and castables based on them is presented. It is shown that corundum ceramic castables (Al2O3>95%) and ceramic castables based on aluminomagnesia spinel can be produced in principle. New molding methods that employ static pressing, ramming (vibroramming), and centrifugal shaping are described. The centrifugal method was used to produce ceramic castables (d max≤5 mm) with an initial porosity of 13–14%. The method of vibroramming from molding systems with a moisture content of 3.4–4.0% was used to produce mullite-corundum ceramic castables with an elevated density and strength. The high efficiency of use of ceramic castables in metallurgy is due to the superfine porous structure of their matrix (binding) phase. The predominant pore size in various binders is 0.01–1.0 μm. In service, materials with such a structure are not impregnated by slag or metal. A principle for increasing the endurance of refractories produced from conventional raw materials using a new technology is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. E. Pivinskii, “Refractory concretes of a new generation. Low-cement concretes, castable vibration thixotropic refractory mixtures,”Ogneupory, No. 7, 1–10 (1990).

    Google Scholar 

  2. Yu. E. Pivinskii and M. A. Trubitsyn, “Refractory concretes of a new generation. Cementless concretes,”Ogneupory, No. 8, 6–16 (1990).

    Google Scholar 

  3. Yu. E. Pivinskii and M. A. Trubitsyn, “Refractory concretes of a new generation. A general characteristic of binding systems,”Ogneupory, No. 12, 1–8 (1990).

    Google Scholar 

  4. Yu. E. Pivinskii, “Refractory concretes of a new generation. Grain composition and volume characteristics,”Ogneupory, Nos. 11–12, 22–27 (1992).

    Google Scholar 

  5. Yu. E. Pivinskii, “Refractory concretes of a new generation. Interrelation of the composition, the structure, and some properties,”Ogneupory, No. 3, 5–11 (1993).

    Google Scholar 

  6. Yu. E. Pivinskii, “Refractory concretes of a new generation. Vibrorheology. Vibration methods of compaction and molding,”Ogneupory, No. 7, 2–11 (1994).

    Google Scholar 

  7. Yu. E. Pivinskii, “Refractory concretes of a new generation. The thermodynamic aspect of the technology,”Ogneupory, No. 1, 2–7 (1995).

    Google Scholar 

  8. Yu. E. Pivinskii, “Refractory concretes of a new generation. Interrelation between structure formation and compaction,”Ogneupory, No. 3, 2–8 (1995).

    Google Scholar 

  9. Yu. E. Pivinskii, “Refractory concretes of a new generation. Thermal processes, structure, and high-temperature properties,”Ogneupory, No. 6, 5–12 (1995).

    Google Scholar 

  10. Yu. E. Pivinskii, “A study of vibration shaping of ceramic concretes. Molding systems and basic features of the process,”Ogneupory, No. 6, 8–14 (1993).

    Google Scholar 

  11. Yu. E. Pivinskii, T. I. Litovskaya, I. B. Volchek, et al., “A study of centrifugal casting of ceramics. Basic parameters and regular features of the process,”Ogneupory, No. 11, 2–6 (1991).

    Google Scholar 

  12. Yu. E. Pivinskii, T. I. Litovskaya, F. S. Kaplan, et al., “A study of centrifugal casting of ceramics. Properties of casting,”Ogneupory, No. 3, 6–9 (1992).

    Google Scholar 

  13. F. S. Kaplan and Yu. E. Pivinskii, “A study of the effect of the disperse composition on the rheological properties of highly concentrated suspensions,”Kolloid. Zh.,54(4), 73–79 (1992).

    CAS  Google Scholar 

  14. Yu. E. Pivinskii and V. A. Beletskaya, “Problems of the technology for and prospects for the use of mineral binding suspensions in building engineering,” in:Modern Problems of Building Engineering (Materials for Int. Conf.). Part 1. Promising Directions in the Theory and Practice of Mineral Binders and Materials Based on Them [in Russian], Samara (1995), pp. 153–154.

  15. Yu. E. Pivinskii, V. A. Beletskaya, and L. N. Shapovalova, “Composite materials based on siliceous binding suspensions,” in:Science and Technology of Silicate Materials under Current Conditions of Market Economy, Abs. Rep. All-Russia Conf. [in Russian], RKhTU, Moscow (1996), pp. 32–33.

    Google Scholar 

  16. Yu. E. Pivinskii and V. A. Beletskaya, “On the effect of the composition of the ceramic binder and some process factors on the properties of unfired building materials,” in:Ibid., pp. 50–51.

    Google Scholar 

  17. Yu. E. Pivinskii, “Materials based on ceramic binding suspensions,” in:Ibid., p. 78.

    Google Scholar 

  18. Yu. E. Pivinskii, “Problems of and prospects for the development of the technology for inorganic materials based on HCBS,” in:Structure of and Manufacturing Process for Parts Made of Nonmetallic Materials [in Russian], ONPO Tekhnologiya, Obninsk (1995), pp. 7–8.

    Google Scholar 

  19. Yu. E. Pivinskii, V. A. Beletskaya, and Yu. I. Aleshin, “Finegrain concrete on a siliceous binding suspensions,” in:Resourse-and Power-Saving Methods for Producing Building Materials, Parts and Structures (Abs. Int. Conf.). Part 1. Power and Resource Saving and Environmental Aspects in the Silicate Industry [in Russian], BelGTASM, Belgorod (1995), pp. 142–143.

    Google Scholar 

  20. Yu. E. Pivinskii and Yu. I. Aleshin, “Effect of the moisture content of the filler in the production of siliceous binding suspensions,” in:Ibid., p. 166.

    Google Scholar 

  21. Yu. E. Pivinskii, D. A. Dobrodon, I. V. Galenko, et al., “Materials based on highly concentrated ceramic binding suspensions (HCBS). Pressing of refractories with the use of HCBS based on bauxite,”Ogneupory Tekh. Keram., No. 3, 19–23 (1997).

    Google Scholar 

  22. Yu. E. Pivinskii, D. A. Dobrodon, E. V. Rozhkov, et al., “Materials based on highly concentrated ceramic binding suspensions (HCBS). Evaluation of methods for shaping ceramic castables,”Ogneupory Tekh. Keram., No. 5, 11–14 (1997).

    Google Scholar 

  23. Yu. E. Pivinskii, D. A. Dobrodon, I. V. Galenko, et al., “Materials based on highly concentrated ceramic binding suspensions (HCBS). Comparative evaluation of the properties and stability in service of socket blocks of intermediate ladles,”Ogneupory Tekh. Keram., No. 9, 33–36 (1997).

    Google Scholar 

  24. Yu. E. Pivinskii, E. A. Doroganov, and D. A. Dobrodon, “Materials based on highly concentrated ceramic binding suspensions (HCBS). Properties of mixed binders in a system of a mullite HCBS with a highly disperse HCBS of quartz glass,”Ogneupory Tekh. Keram., No. 11, 2–6 (1997).

    Google Scholar 

  25. E. M. Grishpun, E. V. Rozhkov, and M. Z. Naginskii, “Introduction of new modern kinds of refractory material by the Dinur Joint-Stock Company,”Ogneupory Tekh. Keram, No. 5, 33–35 (1997).

    Google Scholar 

  26. “Refractories and refractory materials for the metallurgical industry,”Ogneupory Tekh. Keram., No. 10, 38–39 (1997).

  27. E. V. Rozhkov, Yu. E. Pivinskii, V. I. Khabarova et al., “Development, production, and service of quartz immersion nozzles with an elevated endurance,”Ogneupory Tekh. Keram., No. 12, 22–25 (1997).

    Google Scholar 

  28. N. A.Peretokina, T. N. Epifanova, and Yu. E. Pivinskii, “Finegrain high-temperature concretes based on HCBS of quartz sand. I. Initial materials and the effect of the composition of the molding system on the properties of foam concrete” in:Sci.-Eng. Achievements and Problems in the Field of Glass. Glass-Ceramic Materials, and Ceramic Parts and Refractories. Parts 2–3. Rep. Int. Conf. “The Building-Materials Industry, the Building Industry, and Power and Resourse Saving under Conditions of Market Economy” [in Russian], BelGTASM, Belgorod (1997), pp. 90–95.

    Google Scholar 

  29. E. A. Doroganov and Yu. E. Pivinskii, “Interrelation, between the grain composition and the rheological properties of mullitebase HCBS,” in:Ibid., pp. 114–118.

    Google Scholar 

  30. Yu. E. Pivinskii, and V. Yu. Belousova, “On some aspects of the technology of spinel refractories,” in:Ibid., pp. 119–123.

    Google Scholar 

  31. V. G. Savkin, E. V. Rozhkov, Yu. E. Pivinskii, and D. A. Dobrodon, “Development of the industrial process, organization of production, and service of high-alumina ceramic castables,” in:Ibid., pp. 124–128.

    Google Scholar 

  32. Yu. E. Pivinskii and A. V. Cherevatova, “A study of the possibility of using HCBS of thinning materials in the composition of fine ceramic castable systems,” in:Ibid., pp. 129–135.

    Google Scholar 

  33. A. G. Donich, E. V. Rozhkov, and Yu. E. Pivinskii, “Fabrication and properties of low-cement refractory concretes,” in:Ibid., pp. 165–171.

    Google Scholar 

  34. T. N. Epifanova, N. A. Peretokina, and Yu. E. Pivinskii, “Finegrain and high-temperature ceramic castables based on HCBS of quartz sand. 2. Effect of the process parameters and the properties of the molding system on the properties of the material,” in:Ibid., pp. 172–177.

    Google Scholar 

  35. Yu. E. Pivinskii, K. V. Timoshenko, and A. V. Cherevatova, “Fabrication and properties of siliceous-pyrophillite refractories with the use of HCBS of quartz sand,” in:Ibid., pp. 178–183.

    Google Scholar 

  36. D. A. Dobrodon, E. A. Doroganov, and Yu. E. Pivinskii, “Effect of an admixture of a suspension of highly disperse quartz sand on the slag resistance of refractory concretes based on mullite HCBS,” in:Ibid., pp. 198–201.

    Google Scholar 

  37. V. Yu. Belousova, Yu. E. Pivinskii, and I. V. Galenko, “On pressing refractories of a spinel composition,” in:Ibid., pp. 207–210.

    Google Scholar 

  38. Zh. L. Balabanova, K. N. Bel'maz, N. S. Bel'maz, et al., “Corundum concretes on mechanochemical binders with admixtures of zircon and baddeleyite,” in:Ibid., pp. 101–105.

    Google Scholar 

  39. I. I. Nemets, N. S. Bel'maz, Yu. N. Leonova, et al., “Glass-resistant protective coatings based on mechanochemical phosphate-bearing binders,” in:Ibid., pp. 106–108.

    Google Scholar 

  40. V. A. Beletskaya and L. N. Shapovalova, “A silicate material based on a silica suspension,” in:Ibid., pp. 136–140.

    Google Scholar 

  41. V. A. Beletskaya, A. V. Polyakov, and Yu. I. Aleshin, “Rheological properties of slag binding systems,” in:Ibid., pp. 188–197.

    Google Scholar 

  42. V. A. Beletskaya, L. N. Shapovalova, A. V. Polyakov, et al., “Effect of a hydrophobizing admixture on the properties of a silica binding suspension,” in:Ibid., pp. 193–197.

    Google Scholar 

  43. I. I. Nemets, M. A. Trubitsyn, and S. V. Ivanov, “Designing the structure of granular materials,” in:Ibid., pp. 184–187.

    Google Scholar 

  44. I. I. Nemets, N. S. Bel'maz, and L. N. Semykina, “Thermostable-composites based on a three-component binding suspension,”Ogneupory, No. 1, 4–7 (1992).

    Google Scholar 

  45. L. N. Semykina, M. A. Tumanyan, N. S. Bel'maz, et al., “Corundum compositions based on mechanochemical binders,”Izv. Vuzov, Stroitel'stvo, No. 10, 96–98 (1996).

    Google Scholar 

  46. I. I. Nemets, N. S. Bel'maz, L. N. Semykina, et al., “Thermomechanical properties of zirconia concretes on mechanochemical phosphate-bearing binders,”Ogneupory Tekh. Keram., No. 5, 2–5 (1997).

    Google Scholar 

  47. I. I. Nemets and M. A. Trubitsyn, “Slag resistance of vibrocast concretes of an alumosiliceous composition,”Ogneupory Tekh. Keram., No. 2, 28–30 (1996).

    Google Scholar 

  48. P. V. Dyakin, Yu. E. Pivinskii, and F. S. Kaplan, “USSR Inventor's Certificate No. 1715771, A method for fabricating unfired ceramics,”Otkr. Izobr., No. 8 (1992).

  49. I. É. Aleksandrov, T. I. Litovskaya, and Yu. E. Pivinskii, “USSR Inventor's Certificate No. 1726451, A method for fabricating thermally stable refractory parts,”Otkr., Izobr., No. 14 (1992).

  50. P. L. Dyakin, Yu. E. Pivinskii, A. A. Kortel', et al., “USSR Inventor's Certificate No. 1784609, A thixotropic ceramic-castable mixture for vibration casting,”Otkr., Izobr., No. 48 (1992).

  51. A. G. Tyumentsev, Yu. E. Pivinskii, and V. G. Duka, “USSR Inventors' Certificate No. 1821457, A binder and a method for its fabrication,”Otkr. Izobr., No. 22 (1993).

  52. O. N. Samarina, L. N. Sergeev, S. G. Semikova, et al., “Patent No. 2056073 RF, A method for fabricating refractory articles from aluminosilicate ceramic castables,”Izobr., No. 10 (1996).

  53. M. A. Trubitsyn, I. I. Nemets, and Yu. I. Aleshin, “Patent No. 2062770 RF, A ceramic mixture and a method for its fabrication,”Izobr., No. 18 (1996).

  54. Yu. E. Pivinskii and V. A. Beletskaya, “Patent No. 2069040 RF, A method for fabricating a mixed binder,”Izobr., No. 31 (1996).

  55. Yu. I. Aleshin, A. V. Cherevatova, and Yu. E. Pivinskii, “Patent No. 2074146 RF, A method for fabricating building parts,”Izobr., No. 4 (1997).

  56. K. A. Cherepanov, Z. A. Maslovskaya, and N. M. Kulagin, “A technology for manufacturing ceramic castables from industrial waste,”Izv. Vuzov, Chern. Metal., No. 8, 75–76 (1995).

    Google Scholar 

  57. E. V. Nazarova and L. V. Panova, “A quartz-clay mixture for lining frit-melting furnaces,”Steklo Keram., Nos. 1–2, 54 (1996).

    Google Scholar 

  58. B. D. Toturbiev,Building Materials Based on Sodium Silicate Compositions [in Russian], Stroiizdat, Moscow (1988).

    Google Scholar 

  59. H. Taylor,The Chemistry of Concrete [Russian translation], Mir, Moscow (1996).

    Google Scholar 

  60. R. Ya. Popil'skii, and Yu. E. Pivinskii,Pressing of Powder Ceramic Mixtures [in Russian], Metallurgiya, Moscow (1983).

    Google Scholar 

  61. E. Hosoi and K. Yamaguchi, “Micro distribution and gas permeability of high strength castable refractories,”Taikabutsu, Refractories,40(5), 309–312 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ogneupory i Tekhnicheskaya Keramika, No. 3, pp. 15–24, March, 1998.

For the beginning of the article see No. 2, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pivinskii, Y.E. New refractory concretes and binding systems: Basic trends of development, production, and use of refractories in the 21st century. Part II. Ceramic binders and castables. Refractories and Industrial Ceramics 39, 91–99 (1998). https://doi.org/10.1007/BF02767985

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02767985

Keywords

Navigation