Abstract
The first molal hydrolysis quotient, Q1.1, of Mg2+ was measured potentiometrically from 1 to 250°C at ionic strengths of 0.11, 0.31, 1.01, and 5.0 mol-kg-1 in an aqueous NaCl medium using a hydrogen-electrode, concentration cell. Only hydrolysis of the first four percent of the magnesium in solution could be followed before precipitation of brucite, Mg(OH)2(cr), occurred. The log Q1.1 values were fitted as a function of temperature and ionic strength using four adjustable parameters. The resulting constants are compared with the limited existing low temperature data. At infinite dilution and 25°C the following quantities are reported: logK 1.1 = -11.68±0.05, †Hso = 70.1±1.2 kJ-mol-1, †So = 11±4 J-K-1-mol-1, and †C op = 0 J-K-1-mor-1. At each ionic strength, including the values extrapolated to infinite dilution, the heat capacity change for the hydrolysis reaction was zero,i.e., logQ 1.1 was found to be a linear function of the reciprocal temperature in Kelvin, at least over the measured range of l-250°C. The hydrolysis constants at infinite dilution were modeled to 550°C and two kbar pressure with a function incorporating solvent density using published results obtained at these extreme conditions.
Similar content being viewed by others
References
R. E. Mesmer, D. A. Palmer, and J. M. Simonson,Ion Association at High Temperatures and Pressures in “Activity Coefficients in Electrolyte Solutions.” K. S. Pitzer, ed., Chap. 8, (CRC Press, Boca Raton, 1991), p. 49.
C. F. Baes, Jr. and R. E. Mesmer,The Hydrolysis of Cations (Wiley, New York, 1976).
P. L. Brown, S. E. Drummond, Jr., and D. A. Palmer,J. Chem. Soc, Dalton Trans. 3071 (1996).
I. M. Kolthoff,Rec. Travaux Chim. 42, 973 (1923).
P. T. Stock and C. W. Davies,Faraday Soc, Trans. 44, 856 (1948).
D. Lewis,Acta Chem. Scand. 17, 1891 (1963).
P. B. Hostetler,Am. J. Sci. 261, 238 (1963).
S.-T. Liu and G. H. Nancollas,Desalination 12, 75 (1973).
K. A. McGee and P. B. Hostetler,J. Am. Sci. 275, 304 (1975).
K. A. Burkov, E. A. Bus’ko, L. A. Garmash, and G. V. Khonin,Zh. Neorg. Khim. 23, 971 (1978).
R. H. Busey and R. E. Mesmer,J. Chem. Eng. Data 23, 175 (1978).
R. E. Mesmer, C. F. Baes, Jr., and F. H. Sweeton,J. Phys. Chem. 74, 1937 (1970).
R. M. Kettler, D. A. Palmer, and D. J. Wesolowski,J. Solution Chem. 20, 905 (1991).
D. A. Palmer and K. E. Hyde,Geochim. Cosmochim. Acta 57, 1393 (1993).
A. S. Quist and W. L. Marshall,J. Phys. Chem. 69, 2984 (1965).
R. E. Mesmer,Geochim. Cosmochim. Acta 55, 1175 (1991).
K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).
C. Liu and W. L. Lindsay,J. Solution Chem. 1, 45 (1972).
D. J. Bradley and K. S. Pitzer,J. Phys. Chem. 83, 1599 (1979).
W. R. Busing and H. A. Levy, Oak Ridge Natl. Lab. Rep., ORNL-TM (U.S.) ORNL-TM-271 (1963).
D. A. Palmer and D. J. Wesolowski,Geochim. Cosmochim. Acta 57, 2929 (1993).
J. W. Johnson, E. H. Oelkers, and H. C. Helgeson,Computers and Geosciences 18, 899 (1992) (unpublished thermodynamic parameters for Mg(OH)+ obtained from Professor Everett L. Shock, Washington University, February, 1995).
J. W. Cobble and S. W. Lin, “Chemistry of Steam Cycle Solutions: Properties” inThe ASME Handbook on Water Technology for Thermal Power Systems, P. Cohen, ed., The American Society of Mechanical Engineers, Chap.8, 1989.
J. V. Walther,Geochim. Cosmochim. Acta 50, 733 (1986).
L. Haar, J. S. Gallagher, and G. S. Kell,NBSINRC Steam Tables, (Hemisphere, New York, 1984).
G. M. Anderson, S. Castet, J. Schott, and R. E. Mesmer,Geochim. Cosmochim. Acta 55, 1769 (1991).
W. L. Marshall and E. U. Franck,J. Phys. Ref. Data 10, 295 (1981).
J. D. Frantz and W. L. Marshall,Am. J. Sci. 282, 1666 (1982).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Palmer, D.A., Wesolowski, D.J. Potentiometric measurements of the first hydrolysis quotient of magnesium(II) to 250°C and 5 molal ionic strength (NaCl). J Solution Chem 26, 217–232 (1997). https://doi.org/10.1007/BF02767923
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02767923