Skip to main content
Log in

Potentiometric measurements of the first hydrolysis quotient of magnesium(II) to 250°C and 5 molal ionic strength (NaCl)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The first molal hydrolysis quotient, Q1.1, of Mg2+ was measured potentiometrically from 1 to 250°C at ionic strengths of 0.11, 0.31, 1.01, and 5.0 mol-kg-1 in an aqueous NaCl medium using a hydrogen-electrode, concentration cell. Only hydrolysis of the first four percent of the magnesium in solution could be followed before precipitation of brucite, Mg(OH)2(cr), occurred. The log Q1.1 values were fitted as a function of temperature and ionic strength using four adjustable parameters. The resulting constants are compared with the limited existing low temperature data. At infinite dilution and 25°C the following quantities are reported: logK 1.1 = -11.68±0.05, †Hso = 70.1±1.2 kJ-mol-1, †So = 11±4 J-K-1-mol-1, and †C op = 0 J-K-1-mor-1. At each ionic strength, including the values extrapolated to infinite dilution, the heat capacity change for the hydrolysis reaction was zero,i.e., logQ 1.1 was found to be a linear function of the reciprocal temperature in Kelvin, at least over the measured range of l-250°C. The hydrolysis constants at infinite dilution were modeled to 550°C and two kbar pressure with a function incorporating solvent density using published results obtained at these extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Mesmer, D. A. Palmer, and J. M. Simonson,Ion Association at High Temperatures and Pressures in “Activity Coefficients in Electrolyte Solutions.” K. S. Pitzer, ed., Chap. 8, (CRC Press, Boca Raton, 1991), p. 49.

    Google Scholar 

  2. C. F. Baes, Jr. and R. E. Mesmer,The Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  3. P. L. Brown, S. E. Drummond, Jr., and D. A. Palmer,J. Chem. Soc, Dalton Trans. 3071 (1996).

  4. I. M. Kolthoff,Rec. Travaux Chim. 42, 973 (1923).

    CAS  Google Scholar 

  5. P. T. Stock and C. W. Davies,Faraday Soc, Trans. 44, 856 (1948).

    Article  CAS  Google Scholar 

  6. D. Lewis,Acta Chem. Scand. 17, 1891 (1963).

    Article  CAS  Google Scholar 

  7. P. B. Hostetler,Am. J. Sci. 261, 238 (1963).

    Article  CAS  Google Scholar 

  8. S.-T. Liu and G. H. Nancollas,Desalination 12, 75 (1973).

    Article  CAS  Google Scholar 

  9. K. A. McGee and P. B. Hostetler,J. Am. Sci. 275, 304 (1975).

    Article  CAS  Google Scholar 

  10. K. A. Burkov, E. A. Bus’ko, L. A. Garmash, and G. V. Khonin,Zh. Neorg. Khim. 23, 971 (1978).

    Google Scholar 

  11. R. H. Busey and R. E. Mesmer,J. Chem. Eng. Data 23, 175 (1978).

    Article  CAS  Google Scholar 

  12. R. E. Mesmer, C. F. Baes, Jr., and F. H. Sweeton,J. Phys. Chem. 74, 1937 (1970).

    Article  CAS  Google Scholar 

  13. R. M. Kettler, D. A. Palmer, and D. J. Wesolowski,J. Solution Chem. 20, 905 (1991).

    Article  CAS  Google Scholar 

  14. D. A. Palmer and K. E. Hyde,Geochim. Cosmochim. Acta 57, 1393 (1993).

    Article  CAS  Google Scholar 

  15. A. S. Quist and W. L. Marshall,J. Phys. Chem. 69, 2984 (1965).

    Article  CAS  Google Scholar 

  16. R. E. Mesmer,Geochim. Cosmochim. Acta 55, 1175 (1991).

    Article  CAS  Google Scholar 

  17. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Article  CAS  Google Scholar 

  18. C. Liu and W. L. Lindsay,J. Solution Chem. 1, 45 (1972).

    Article  CAS  Google Scholar 

  19. D. J. Bradley and K. S. Pitzer,J. Phys. Chem. 83, 1599 (1979).

    Article  CAS  Google Scholar 

  20. W. R. Busing and H. A. Levy, Oak Ridge Natl. Lab. Rep., ORNL-TM (U.S.) ORNL-TM-271 (1963).

  21. D. A. Palmer and D. J. Wesolowski,Geochim. Cosmochim. Acta 57, 2929 (1993).

    Article  CAS  Google Scholar 

  22. J. W. Johnson, E. H. Oelkers, and H. C. Helgeson,Computers and Geosciences 18, 899 (1992) (unpublished thermodynamic parameters for Mg(OH)+ obtained from Professor Everett L. Shock, Washington University, February, 1995).

    Article  Google Scholar 

  23. J. W. Cobble and S. W. Lin, “Chemistry of Steam Cycle Solutions: Properties” inThe ASME Handbook on Water Technology for Thermal Power Systems, P. Cohen, ed., The American Society of Mechanical Engineers, Chap.8, 1989.

  24. J. V. Walther,Geochim. Cosmochim. Acta 50, 733 (1986).

    Article  CAS  Google Scholar 

  25. L. Haar, J. S. Gallagher, and G. S. Kell,NBSINRC Steam Tables, (Hemisphere, New York, 1984).

    Google Scholar 

  26. G. M. Anderson, S. Castet, J. Schott, and R. E. Mesmer,Geochim. Cosmochim. Acta 55, 1769 (1991).

    Article  CAS  Google Scholar 

  27. W. L. Marshall and E. U. Franck,J. Phys. Ref. Data 10, 295 (1981).

    Article  CAS  Google Scholar 

  28. J. D. Frantz and W. L. Marshall,Am. J. Sci. 282, 1666 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, D.A., Wesolowski, D.J. Potentiometric measurements of the first hydrolysis quotient of magnesium(II) to 250°C and 5 molal ionic strength (NaCl). J Solution Chem 26, 217–232 (1997). https://doi.org/10.1007/BF02767923

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02767923

Key words

Navigation