Skip to main content
Log in

Aggregation number of aqueous sodium cholate micelles from mutual diffusion measurements

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

With reported values ranging from about 3 to 16, the aggregation number of aqueous sodium cholate micelles is not well established. To provide new information on the aggregation of a bile salt, Taylor dispersion is used to measure the binary mutual diffusion coefficientD of aqueous sodium cholate at concentrations from 0.001 to 0.100 mol-dm-3 at 25°C. The results are compared with calculatedD values based on the association equilibrium nCholate- + βnNa+ ⇋ (NaβCholate) (β-1)nn wheren is the aggregation number and β is the degree of sodium counterion binding. Fitting the association model to the diffusion data givesn = 3.9±0.6 and β = 0.21 ±0.08. In contrast to the drop inD with increasing concentration of sodium cholate, the diffusion coefficients of sodium dodecylsulfate and other long-chain ionic surfactants increase above the critical micelle region. The ent diffusion behavior of the surfactants is related to changes in the driving forces and mobilities caused by ion association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Beckerdite and E. T. Adams,Biophys. Chem. 21, 103 (1985).

    Article  CAS  Google Scholar 

  2. D. Attwood and A. T. Florence,Surfactant Systems, Their Chemistry, Pharmacy and Biology (Chapman and Hall, London, 1983), p. 185.

    Google Scholar 

  3. J. M. Roe and B. W. Barry,J. Colloid Interface Sci. 107, 398 (1985).

    Article  CAS  Google Scholar 

  4. P. Mukerjee and J. R. Cardinal,J. Pharm. Sci. 65, 882 (1976).

    Article  CAS  Google Scholar 

  5. A. Coello, F. Meijide, E. R. Núñez, and J. V. Tato,J. Phys. Chem. 97, 10186 (1993).

    Article  CAS  Google Scholar 

  6. M. C. Carey,Sterols and Bile Acids, H. Danielsson and J. Sjõvall, eds. (Elsevier, Amsterdam, 1985), Chap. 13.

    Google Scholar 

  7. W. B. Smith and G. D. Barnard,Can. J. Chem. 59, 1602 (1981).

    Article  CAS  Google Scholar 

  8. M. Vadnere and S. Lindenbaum,J. Pharm. Sci. 71, 875 (1982).

    Article  CAS  Google Scholar 

  9. B. Lindman, K. Kamenka, H. Fabre, J. Ulmius, and T. Wieloch,J. Colloid Interface Sci. 73, 556 (1980).

    Article  CAS  Google Scholar 

  10. K. Fontell,Kolloid Z. Z. Polym. 244, 253 (1971).

    Article  CAS  Google Scholar 

  11. J. Zakrzewska, V. Markovic, D. Vucelic, L. Feigin, A. Dembro, and L. Mogilevsky,J. Phys. Chem. 94, 5078 (1990).

    Article  CAS  Google Scholar 

  12. J. P. Kratohvil,Hepatology 4, 85S (1984).

    Article  CAS  Google Scholar 

  13. B. Lindman, N. Kamenka, and B. Brun,J. Colloid Interface Sci. 56, 328 (1976).

    Article  CAS  Google Scholar 

  14. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd edn., (Academic, New York, 1959).

    Google Scholar 

  15. D. G. Leaist and H. Lü,J. Phys. Chem. 94, 8741 (1990).

    Article  CAS  Google Scholar 

  16. D. G. Leaist,Can. J. Chem. 66, 1129 (1988).

    Article  CAS  Google Scholar 

  17. P. Mukerjee and K. J. Mysels,Critical Micelle Concentrations of Aqueous Surfactant Solutions, Nat. Stand. Ref. Data Ser. (Natl. Bur. Stand. (U.S.), Washington, 1971).

    Google Scholar 

  18. Z. Deng and D. G. Leaist,Can. J. Chem. 69, 1548 (1991).

    Article  CAS  Google Scholar 

  19. D. G. Leaist,J. Chem. Soc, Faraday Trans. 76, 597 (1991).

    Article  Google Scholar 

  20. J. P. Kratohvil, W. P. Hsu, M. A. Jacobs, T. M. Aminabhavi, and Y. Mukunoki,Colloid Polym. Sci. 261, 781 (1983).

    Article  CAS  Google Scholar 

  21. D. G. Leaist,J. Colloid Interface Sci. 111, 230 (1986).

    Article  CAS  Google Scholar 

  22. D. G. Leaist and L. Hao,J. Chem. Soc, Faraday Trans. 89, 2775 (1993).

    Article  CAS  Google Scholar 

  23. H. S. Harned and B. B. Owens,Physical Chemistry of Electrolytic Solutions, 2nd edn., (Reinhold, New York, 1950), p. 38.

    Google Scholar 

  24. E. A. Guggenheim,Thermodynamics, 3rd edn., (North-Holland, Amsterdam, 1957), p. 355.

    Google Scholar 

  25. K. Juna and T. Sugano,Nippon Kagaku Zashi 90, 463 (1969).

    CAS  Google Scholar 

  26. R. Vochten and P. Joos,J. Chim. Phys.-Chim. Biol. 67, 1372 (1970).

    Google Scholar 

  27. Z. Deng, H. Lü and D. G. Leaist,J. Chem. Eng. Data 41, 214 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, L., Lu, R., Leaist, D.G. et al. Aggregation number of aqueous sodium cholate micelles from mutual diffusion measurements. J Solution Chem 26, 113–125 (1997). https://doi.org/10.1007/BF02767916

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02767916

Key words

Navigation