Skip to main content
Log in

Rheology in the technology of ceramics and refractories. Part 5. Dilatancy: Classification and types of dilatant systems

  • Research
  • Published:
Refractories and Industrial Ceramics Aims and scope

Abstract

A great majority of high-density ceramic binding suspensions (HDBS) and the related molding systems, characterized by a volume fraction of the solid phaseC v=0.80−0.85, exhibit a strongly pronounced dilatancy that is a source of difficulties for the production and use of these materials. The effect of dilatancy and the mechanism of dilatant flow are analyzed from the standpoint of thermodynamics and colloid chemistry. Original experimental results and published data are generalized and a classification of the main types of dilatancy is proposed. The effects of some important factors on the character of dilatant flow in high-density ceramic binding suspensions based on quartz glass, quartz sand, mullite, and titanium dioxide are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. E. Pivinskii,Ceramic Binders and Ceramic Concretes [in Russian], Metallurgiya, Moscow (1990).

    Google Scholar 

  2. M. Reiner,Deformation and Flow [Russian translation], Neftegortopizdat, Moscow (1963).

    Google Scholar 

  3. N. B. Ur'ev,Physicochemical Principles of the Technology of Disperse Systems and Materials [in Russian], Khimiya, Moscow (1988).

    Google Scholar 

  4. L. I. Peregudova, A. V. Akol'zina, N. B. Ur'ev, et al., “Colloidal-chemical properties of zinc-silicate compositions,”Kolloidn. Zh.,57(5), 709–712 (1995).

    Google Scholar 

  5. N. B. Ur'ev and A. A. Potanin,Flowability of Suspensions and Powders [in Russian], Khimiya, Moscow (1992).

    Google Scholar 

  6. Yu. E. Pivinskii, “On the thixotropy and dilatancy of ceramic suspensions of fused quartz,”Zh. Prikl. Khim.,456(9), 1917–1922 (1972).

    Google Scholar 

  7. Yu. E. Pivinskii, “Rheological and sedimentation properties of ceramic suspensions with granulated fillers,”Ogneupory, No. 4, 52–57 (1972).

    Google Scholar 

  8. Yu. E. Pivinskii, “Rheological properties of aqueous silica gel suspensions,”Kolloidn. Zh.,35(2), 289–295 (1973).

    Google Scholar 

  9. Yu. E. Pivinskii, “Study of dilatancy in mineral suspensions of various concentrations,”Fiz.-Khim. Mekh. Liof. Disp. Sistem, No. 6, 182–187 (1974).

    CAS  Google Scholar 

  10. N. N. Kruglitskii and Yu. E. Pivinskii, “Effect of temperature on dilatancy of mineral suspensions,”Fiz.-Khim. Mekh. Liof. Disp. Sistem, No. 6, 111–113 (1974).

    Google Scholar 

  11. N. N. Kruglitskii and Yu. E. Pivinskii,Principles of Rheology, Znanie, Kiev (1973).

    Google Scholar 

  12. N. N. Kruglitskii and Yu. E. Pivinskii, “On classification of the types of rheological behavior of dilatant disperse systems,”Dokl. Akad. Nauk UkrSSR, Ser. B, No. 3, 258–261 (1974).

    Google Scholar 

  13. Yu. E. Pivinskii and A. G. Romashin,Quartz Ceramics [in Russian], Matallurgiya, Moscow (1974).

    Google Scholar 

  14. Yu. E. Pivinskii and A. I. Natsenko, “Rheological and technological properties of mixed suspensions based on refractory components,”Ogneupory, No. 11, 49–55 (1974).

    Google Scholar 

  15. Yu. E. Pivinskii and N. N. Kruglitskii, “Effect of temperature on the rheological behavior of disperse non-Newtonian systems,”Kolloidn. Zh.,37(5), 997–1001 (1975).

    Google Scholar 

  16. Yu. E. Pivinskii, “Principles of ceramic concrete technology,”Ogneupory, No. 3, 34–42 (1978).

    Google Scholar 

  17. Yu. E. Pivinskii and R. G. Makarenkova, “The effect of granulated filler on the rheological properties of ceramic suspensions,”Ogneupory, No. 12, 39–44 (1978).

    Google Scholar 

  18. Yu. E. Pivinskii, “Study of the rheological and binding properties of quartz sand suspensions,”Ogneupory, No. 6, 39–45 (1980).

    Google Scholar 

  19. Yu. E. Pivinskii and P. L. Mityakin, “Rheological and binding properties of high-silica-gel suspensions,”Ogneupory, No. 5, 48–52 (1981).

    Google Scholar 

  20. V. A. Bevz and Yu. E. Pivinskii, “Obtaining binding suspensions and ceramic concretes on the basis of dinas,”Ogneupory, No. 9, 46–51 (1981).

    Google Scholar 

  21. N. N. Kruglitskii and Yu. E. Pivinskii, “Effect of stabilization and coagulation on the dilatancy of mineral suspensions,”Khim. Tekhnol., No. 1, 22–24 (1981).

    Google Scholar 

  22. Yu. E. Pivinskii, “On the phase relations, important technological properties, and classification of ceramic and other binder systems,”Ogneupory, No. 6, 49–60 (1982).

    Google Scholar 

  23. Yu. E. Pivinskii, “Volumetric and phase characteristics and their effect on the properties of suspensions and ceramic mold systems,”Ogneupory, No. 11, 50–58 (1982).

    Google Scholar 

  24. Yu. E. Pivinskii, “On the stabilization and aging of ceramic suspensions,”Ogneupory, No. 8, 15–22 (1983).

    Google Scholar 

  25. Yu. E. Pivinskii, N. T. Kotova, and F. S. Kaplan, “Highly concentrated suspensions of nontransparent quartz glass and related materials,”Ogneupory, No. 6, 14–19 (1986).

    Google Scholar 

  26. Yu. E. Pivinskii, “Highly concentrated ceramic binding suspensions. Principles of technology,”Ogneupory, No. 10, 3–9 (1987).

    Google Scholar 

  27. Yu. E. Pivinskii, “Highly concentrated ceramic binding suspensions. Stabilization, rheological properties, and principles of rheotechnological compatibility,”Ogneupory, No. 6, 6–13 (1988).

    Google Scholar 

  28. F. S. Kaplan and Yu. E. Pivinskii, “Rheological and colloidal-chemical properties of disperse ceramic systems,” in:Chemistry and Technology of Silicate and Refractory Nonmetallic Materials [in Russian], Nauka, Leningrad (1989), pp. 125–141.

    Google Scholar 

  29. F. S. Kaplan, Yu. E. Pivinskii, and A. N. Saprykin, “On features of dilatant strengthening of quartz glass suspensions,”Kolloidn. Zh.,50(6), 1092–1098 (1988).

    CAS  Google Scholar 

  30. F. S. Kaplan and Yu. E. Pivinskii, “Study of the effect of dispersion composition on the rheological properties of highly concentrated silica gel suspensions,”Kolloidn. Zh.,54(4), 73–79 (1992).

    CAS  Google Scholar 

  31. Yu. E. Pivinskii, “Refractory concretes of a new generation. Colloidal-chemical aspects of the technology,”Ogneupory, No. 1, 4–12 (1994).

    Google Scholar 

  32. Yu. E. Pivinskii, “Refractory concretes of new generation. Rheological aspects of technology,”Ogneupory, No. 4, 6–14 (1994).

    Google Scholar 

  33. H. Freundlich and H. L. Roder, “Thixotropy and dilatancy,”Trans. Faraday Soc.,34(202), 308–316 (1938).

    Article  CAS  Google Scholar 

  34. W. H. Bauer and E. A. Collins, “Thixotropy and dilatancy,”Rheol. Theory Appl.,IV(4), 423–459 (1967).

    Google Scholar 

  35. A. B. Metzner and M. Whitlok, “Factors influencing dilatant behavior of suspensions,”Trans. Soc. Rheol.,2(2), 239–247 (1958).

    Article  Google Scholar 

  36. M. K. Gal'perina and I. V. Kolyshkina, “Study of the rheological properties of clay slips,”Trudy Gos. NIIStroikeramika, No. 53, 5–16 (1983).

    Google Scholar 

  37. I. F. Efremov, G. M. Lukashenko, and É. A. Terent'eva, “The formation and properties of periodic colloidal structures,” in:Surface Forces in Thin Films [in Russian], Nauka, Moscow (1979), pp. 20–29.

    Google Scholar 

  38. I. F. Efremov, G. M. Lukashenko, and É. A. Terent'eva, “Dilatancy of colloidal structures,”Kolloidn. Zh.,42(5), 859–866 (1980).

    CAS  Google Scholar 

  39. I. F. Efremov, “Dilatancy of colloidal structures and polymer solutions,”Usp. Khim.,51(2), 285–310 (1982).

    CAS  Google Scholar 

  40. P. F. Ovchinnikov, “Rheological equations of thixotropic-dilatant structures,”Kolloidn. Zh.,40(2), 263–269 (1978).

    Google Scholar 

  41. P. F. Ovchinnikov,Vibrorheology [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  42. M. N. Avdeev, “Characteristics of the structural-mechanical properties of dilatant disperse systems,” in:Selected Physico-Mechanical Studies of Liquid Systems [in Russian], Rostov-on-Don (1974), pp. 131–136.

  43. A. W. Dobrovolskiy, “Development of slip moulding methods,”Ceramurgia Intern.,3(4), 156–164 (1977).

    Google Scholar 

  44. R. Lenk, “Rheologische Eigenschaften von SiC-Spritzgiebmassen,”Sprechsaal,124(9), 563–573 (1991).

    CAS  Google Scholar 

  45. Yu. E. Pivinskii, “Rheology in the technology of ceramics and refractories. 2. Disperse systems. Experimental techniques and methods of estimation of the rheological properties,”Ogneupory, No. 12, 11–19 (1995).

    Google Scholar 

  46. Yu. E. Pivinskii, “Rheology in the technology of ceramics and refractories. 3. Thixotropy and the classification of thixotropic systems,”Ogneupory, No. 1, 14–20 (1996).

    Google Scholar 

  47. Yu. E. Pivinskii, “Rheology in the technology of ceramics and refractories. 3. Thixotropic systems and factors determining their properties,”Ogneupory, No. 10, 9–16 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ogneupory i Tekhnicheskaya Keramika, No. 2, pp. 8–16, February, 1997.

For the previous articles of this series see No. 3 (1994), No. 12 (1995), and Nos. 1 and 10 (1996).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pivinskii, Y.E. Rheology in the technology of ceramics and refractories. Part 5. Dilatancy: Classification and types of dilatant systems. Refractories and Industrial Ceramics 38, 54–61 (1997). https://doi.org/10.1007/BF02767834

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02767834

Keywords

Navigation