Skip to main content
Log in

Review of Thermal Boundary Resistance of High-Temperature Superconductors

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Solid-solid thermal boundary resistance plays an important role in the thermal stability of many electronic circuits, microdevices, and superconducting devices. The thermal boundary resistance (R b ) at any interface causes a temperature discontinuity, which can result in heat accumulation on one side of the boundary and raise the temperature much above the stable region, causing device failure. With the advent of high-critical-temperature (high-T c ) superconductors, it is possible to make superconducting devices at practically achievable temperatures. As the current trend goes toward the development of more and more high-Tc superconducting devices, the need for a better understanding of the thermal boundary resistance of high-Tc superconductors becomes mandatory. This paper compiles all the theoretical and experimental work to date onR b in high-Tc superconductors, both in thin-film and bulk forms, and provides a critical review of the cited works. This paper also describes the possible effect of the superconducting state onR b for high-T c superconductors, based on the experiments for both high-Tc and low-Tc bulk superconductors, and a possible explanation for these data based on the existing theory for low-T c superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bourdillon and N. X. T. Bourdillon,High-Temperature Superconductors: Processing and Science (Academic Press, Inc., San Diego, California, 1994).

    Google Scholar 

  2. M. I. Flik and C. L. Tien,J. Heat transfer 112, 10 (1990).

    Google Scholar 

  3. E. T. Swartz and R. O. Pohl,Rev. Modern Phys. 61, 605 (1989).

    Article  ADS  Google Scholar 

  4. T. Kilistner and R. O. Pohl,Phys. Rev. B 36, 6551 (1987).

    Article  ADS  Google Scholar 

  5. P. E. Phelan, Y. Song, O. Nakabeppu, K. Ito, K. Hijakata, T. Ohmori, and K. Torikoshi,J. Heat Transfer 116, 1038 (1994).

    Google Scholar 

  6. W. A. Little,Can. J. Phys. 37, 334 (1959).

    ADS  Google Scholar 

  7. M. Nahum, S. Verghese, and P. L. Richards,Appl. Phys. Lett. 59, 2034(1991).

    Article  ADS  Google Scholar 

  8. P. E. Phelan, to appear inJ. Heat Transfer (1997).

  9. B. M. Terzijska, R. Wawryk, D. A. Dimitrov, C. Z. Marucha, V. T. Kovachev, and J. Rafalowicz,Cryogenics 32, 53 (1992).

    Article  ADS  Google Scholar 

  10. N. Wendling, N. J. Chaussy, J. Mazuer, and J. Odin,Cryogenics 34, 89 (1994).

    Article  Google Scholar 

  11. M. Kelkar, P. E. Phelan, and B. Gu,Int. J. Heat Mass Transfer,40, 2637(1997).

    Article  Google Scholar 

  12. G. D. Marshall, I. M. Fishman, and M. D. Fayer,Phys. Rev. B 43, 2696(1991).

    Article  ADS  Google Scholar 

  13. G. L. Carr, M. QuiJada, D. B. Tanner, D. B. Hirschoneyl, G. P. Williams, S. Ellmad, B. Dutta, F. De Roja, A. Imam, T. Venkatesan, and X. Xi,Appl. Phys. Lett. 57, 2725 (1990).

    Article  ADS  Google Scholar 

  14. S. Zeuner, H. Lengfellner, and W. Prettl,Phys. Rev. B 51, 903 (1995).

    Article  Google Scholar 

  15. A. V. Sergeev, A. D. Semenov, P. Kouminev, V. Trifanov. I. G. Goghidze, B. S. Karasik, G. N. Gol’tsman, and E. M. Gesvsherzen,Phys. Rev. B 49, 9091 (1994).

    Article  ADS  Google Scholar 

  16. A. Sergeev, A. Semenov, V. Trifonov, B. Karasik, G. Gol’tsman, and E. Geshenzen,J. Supercond. 7, 341 (1994).

    Article  ADS  Google Scholar 

  17. M. Lindgren, V. Trifanov, M. Zorin, M. Danervd, D. Winkler, B. S. Karasik, G. N. Gol’tsman, and E. M. Gershenzen,Appl. Phys. Lett. 64, 3036 (1994).

    Article  ADS  Google Scholar 

  18. K. E. Goodson, Y. S. Ju, M. Asheshi, O. W. KÄding, M. N. Touzelbaev, Y. K. Leung, and S. S. Wong,ASME Proceedings of the 31st National Heat Transfer Conference,5, 1 (1996).

    Google Scholar 

  19. M. Satter and T. Ashworth, inThermal Conductivity, T. Ashworth and D. R. Smith, eds. (Plenum, New York, 1984), pp. 641–650.

    Google Scholar 

  20. T. Fletcher,J. Heat Transfer 110, 1059 (1988).

    Article  Google Scholar 

  21. C. V. Madhusudana and L. S. Fletcher,Nucl. Sci. Eng. 83, 327 (1983).

    Google Scholar 

  22. J. M. Ochterbeck, G. P. Peterson, and L. S. Fletcher,J. Heat Transfer 114, 21 (1992).

    Google Scholar 

  23. P. E. Phelan and M. M. G. Nejhad,J. Electron. Packaging 116, 249(1994).

    Google Scholar 

  24. A. Frankel, M. A. Saifi, T. Venkatesan, P. England, X. D. Wu, and A. Imam,J. Appl. Phys. 67, 3054 (1990).

    Article  ADS  Google Scholar 

  25. C. G. Levy, S. E. Etemad, and A. Imam,Appl. Phvs. Lett. 60, 126(1992).

    Article  ADS  Google Scholar 

  26. M. I. Flik, P. E. Phelan, and C. L, Tien,Cryogenics 30, 1118 (1990).

    Article  Google Scholar 

  27. Y. Suntao. C. Binjiang, E. E. Hellstrom. E. Stiers, and J. M. Pfotenhauer,IEEE Trans. Appl. Supercond. 5, 1471 (1995).

    Article  Google Scholar 

  28. R. E. Peterson and A. C. Anderson.J. Low Temp. Phys. 11, 639(1973).

    Article  ADS  Google Scholar 

  29. S. Sahling, J. Engert, A. Gladeen, and R. Knrom,J. Low Temp. Phys. 45. 457 (1981).

    Article  ADS  Google Scholar 

  30. M. A. Zelikman and B. S. Spivak.Sov. Plys. JETP 49, 377 (1979).

    ADS  Google Scholar 

  31. K. H. Yoo and A. C. Anderson. “Thermal Impedance to Normal and Superconducting Metals,”J. Low Temp. Phys. 63. 269(1986).

    Article  ADS  Google Scholar 

  32. B. S. Papk and Y. Narahara,J. Phys. Soc. Jpn. 30, 760 (1971).

    Article  ADS  Google Scholar 

  33. D. Dimitrov, B. Guevezov, B. Terzijska, and V. Kovachev,Cryogenics 30, 348 (1990).

    Article  Google Scholar 

  34. Jezowski and Klamut,Studies of High-Temperature Superconductors, Vol. 4 (Nova Science Publishers, 1990).

  35. S. Hagen, Z. Wang, and N. Pong,Phvs. Rev. B 40, 9389 (1994).

    Article  ADS  Google Scholar 

  36. M. M. Yovanovich. inProgress in Aeronautics and Astronautics Spacecraft Radiative Heat Transfer and Temperature Control, Vol. 83, T. E. Horton, ed. (MIT Press, Cambridge, Massachusetts, 1982), pp. 83 95.

    Google Scholar 

  37. A. Majumdar,J. Heat Transfer 113. 797 (1991).

    Article  Google Scholar 

  38. F. Gompf, B. Renker, and E. Gering,Phvsica C 153-155, 274 (1988).

    Article  ADS  Google Scholar 

  39. J. D. N. Cheeke, H. Ettinger, and B. Hebral,Can. J. Phvs. 54, 1749(1976).

    ADS  Google Scholar 

  40. Z. M. Zhang and A. Frenkel,J. Supercond. 7, 871 (1994).

    Article  ADS  Google Scholar 

  41. M. Cardona,J. Mol. Struc. 292, 255 (1993).

    Article  ADS  Google Scholar 

  42. D. Mihailovic and I. Poberas,J. Phvs. Chem. Solids 54, 1315 (1993).

    Article  ADS  Google Scholar 

  43. G. L. Zhao and J. Callaway.Phys. Rev. B. 50. 9511 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasher, R.S., Phelan, P.E. Review of Thermal Boundary Resistance of High-Temperature Superconductors. J Supercond 10, 473–484 (1997). https://doi.org/10.1007/BF02767682

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02767682

Key words

Navigation