Materials Science

, Volume 36, Issue 2, pp 300–304 | Cite as

Mechanothermodiffusion interaction of bodies with regard for the filler of intercontact gaps

  • R. M. Martynyak
Brief Communications


Half Space Half Plane Thermal Flow Quasibrittle Fracture Pidstryhach Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Martynyak, “Contact of a half space with irregular base in the case of an intercontact gap filled with ideal gas,”Mat. Met. Fiz.-Mekh. Polya,41, No. 4, 144–149 (1998).Google Scholar
  2. 2.
    R. M. Martynyak, “Simulation of the mechanodiffusion interaction of bodies with perturbed surfaces,”Visn. Derzh. Univ. “L’vivs’ka Politekhnika. ” Prikl. Mat., No. 346,13-16 (1998).Google Scholar
  3. 3.
    V. V. Panasyuk,Mechanics of Quasibrittle Fracture of Materials [in Russian], Naukova Duraka. Kiev (1991).Google Scholar
  4. 4.
    O. Ye. Andreikiv, “Mathematical modeling of hydrogen assisted fracture in metals,”Fiz.-Khim. Mekh. Mater.,33, No. 4, 53–64 (1997).Google Scholar
  5. 5.
    H. S. Kit and Ya. S. Pidstryhach, “Determination of the stationary temperature field and stresses in the vicinity of a slot with thermal resistance,”Fiz.-Khim. Mekh. Mater.,2, No. 3, 247–252 (1966).Google Scholar
  6. 6.
    Ya. S. Pidstryhach, R. M. Shvets, and V. S. Pavlyna, “A quasistatic problem of thermal diffusion for deformable bodies,”Prikl. Mekh.,7, No. 12, 10–16(1971).Google Scholar
  7. 7.
    R. Martynyak, A. Kryshtafovych, and I. Machyshyn, “Unilateral contact of bodies with consistent surfaces under the action of heat sources and sinks,”Visn. L’viv. Univ., Ser. Mekh. Mat., Issue 55, 169–173 (1999).Google Scholar
  8. 8.
    N. N. Muskhelishvili,Singular Integral Equations [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  9. 9.
    J. R. Barber and M. Comninou,Thermoelastic Contact Problems, Amsterdam (1989).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • R. M. Martynyak
    • 1
  1. 1.Pidstryhach Institute of Applied Problems of Mechanics and MathematicsUkrainian Academy of SciencesL’viv

Personalised recommendations