Skip to main content
Log in

Disopyramide improves the balance between myocardial oxygen supply and demand in patients with hypertrophic obstructive cardiomyopathy

  • Originals
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Summary

We evaluated the effects of disopyramide in terms of the balance between myocardial oxygen supply and demand in patients with hypertrophic obstructive cardiomyopathy (HOCM). The myocardial oxygen supply was evaluated by measuring coronary flow velocity and the myocardial oxygen demand was assessed by the pressure-volume area (PVA). The time velocity integral of coronary flow did not change significantly (20±6 to 21±8 cm), but the peak left ventricular pressure and left ventricular external work decreased significantly (206±44 to 157±37 mmHg,P<0.001; 1.09±0.33 to 0.80±0.23 J/beat,P<0.001) after disopyramide administration. From theoretical analysis using these data, we concluded that disopyramide improves the myocardial oxygen supply-demand balance in patients with HOCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pollick C (1982) Muscular subaortic stenosis: hemodynamic and clinical improvement after disopyramide. N Engl J Med 307:997–999

    Article  PubMed  CAS  Google Scholar 

  2. Duncan WJ, Tyrrell MJ, Bharadwaj BB (1991) Disopyramide as a negative inotrope in obstructive cardiomyopathy in children. Can J Cardiol 7:81–86

    PubMed  CAS  Google Scholar 

  3. Millaire A, Goullard L, Decoulx E, de Groote P, Houdas Y, Ducloux G (1992) Efficiency of disopyramide in hypertrophic cardiomyopathy during stress states. Am J Cardiol 69:423–424

    Article  PubMed  CAS  Google Scholar 

  4. Kimball BP, Bui S, Wigle ED (1993) Acute dose-response effects of intravenous disopyramide in hypertrophic obstructive cardiomyopathy. Am Heart J 125:1691–1697

    Article  PubMed  CAS  Google Scholar 

  5. Matsubara H, Nakatani S, Nagata S, Ishikura F, Katagiri Y, Ohe T, Miyatake K (1995) Salutary effect of disopyramide on left ventricular diastolic function in hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol 26:768–775

    Article  PubMed  CAS  Google Scholar 

  6. Pollick C, Kimball B, Henderson M, Wigle ED (1988) Disopyramide in hypertrophic cardiomyopathy. I. Hemodynamic assessment after intravenous administration. Am J Cardiol 62:1248–1251

    Article  PubMed  CAS  Google Scholar 

  7. Suga H, Hayashi T, Suehiro S, Hisano R, Shirahata M, Ninomiya I (1981) Equal oxygen consumption rates of isovolumic and ejecting contractions with equal systolic pressure-volume areas in canine left ventricle. Circ Res 49:1082–1091

    PubMed  CAS  Google Scholar 

  8. Suga H, Hayashi T, Shirahata M (1981) Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol 240:H39-H44

    PubMed  CAS  Google Scholar 

  9. Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277

    PubMed  CAS  Google Scholar 

  10. Kameyama T, Asanoi H, Ishizaka S, Yamanishi K, Fujita M, Sasayama S (1992) Energy conversion efficiency in human left ventricle. Circulation 85:988–996

    PubMed  CAS  Google Scholar 

  11. Takaoka H, Takeuchi M, Odake M, Yokoyama M (1992) Assessment of myocardial oxygen consumption (Vo2) and systolic pressure-volume area (PVA) in human hearts. Eur Heart J 13(Suppl E):85–90

    PubMed  Google Scholar 

  12. Takaoka H, Takeuchi M, Odake M, Hayashi Y, Hata K, Mori M, Yokoyama M (1993) Comparison of hemodynamic determinants for myocardial oxygen consumption under different contractile states in human ventricle. Circulation 87:59–69

    PubMed  CAS  Google Scholar 

  13. Hayashi Y, Takeuchi M, Takaoka H, Hata K, Mori M, Yokoyama M (1996) Alteration in energetics in patients with left ventricular dysfunction after myocardial infarction: Increased oxygen cost of contractility. Circulation 93:932–939

    Google Scholar 

  14. Yamakawa H, Takeuchi M, Takaoka H, Hata K, Mori M, Yokoyama M (1996) Negative chronotropic effect of β-blockade therapy reduces myocardial oxygen expenditure for nonmechanical work. Circulation 94:340–345

    Google Scholar 

  15. Pierce GE, Morrow AG, Braunwald E (1964) Idiopathic hypertrophic subaortic stenosis III. Circulation 30[Suppl 4]:152–174

    PubMed  Google Scholar 

  16. Murgo JP, Alter BR, Dorethy JF, Altobelli SA, McGranahan GJ (1980) Dynamics of left ventricular ejection in obstructive and nonobstructive hypertrophic cardiomyopathy. J Clin Invest 66:1369–1382

    PubMed  CAS  Google Scholar 

  17. Maron BJ, Gottdiener JS, Arce J, Rosing DR, Wesley YE, Epstein SE (1985) Dynamic subaortic obstruction in hypertrophic cardiomyopathy: Analysis by pulsed Doppler echocardiography. J Am Coll Cardiol 6:1–18

    Article  PubMed  CAS  Google Scholar 

  18. Eckenhoff JE, Hafkenschiel JH, Landmesser CM, Harmel M (1947) Cardiac oxygen metabolism and control of the coronary circulation. Am J Physiol 149:634–649

    CAS  PubMed  Google Scholar 

  19. Hongo M, Nakatsuka T, Takenaka H, Tanaka M, Watanabe N, Yazaki Y, Sekiguchi M (1996) Effects of intravenous disopyramide on coronary hemodynamics and vasodilator reserve in hypertrophic obstructive cardiomyopathy. Cardiology 87:6–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niki, K., Sugawara, M., Asano, R. et al. Disopyramide improves the balance between myocardial oxygen supply and demand in patients with hypertrophic obstructive cardiomyopathy. Heart Vessels 12, 111–118 (1997). https://doi.org/10.1007/BF02767128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02767128

Key words

Navigation