Skip to main content
Log in

Functional activity of the CFTR Cl channel in human myocardium

  • Originals
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Summary

The cyclic AMP (cAMP)-dependent chloride channel in the heart has been identified in various species as the cystic fibrosis transmembrane conductance regulator (CFTR). Although functional expression of the channel in the human atrium has been reported, we could not induce any cAMP-dependent chloride conductance in the atrial cells even with maximal cAMP stimulation, whereas the conductance could be induced in rabbit ventricular cells. To clarify the discrepancy between the results, we examined the level of CFTR mRNA expression in both conductance-positive (human colonic epithelium and rabbit ventricle) and -negative (human atrium) tissues. Total RNA samples prepared from these tissues were subjected to the reverse transcription-polymerase chain reaction (RT-PCR). While CFTR transcripts were amplified from the conductance-positive samples, no amplified products could be detected from the conductance-negative sample. A nested PCR performed on the RT-PCR products of the conductance-negative sample resulted in successful amplification of the transcripts, indicating that the level of the CFTR mRNA expression in human atrium is extremely low compared with that in colonic epithelium and rabbit ventricle. The same molecular results were observed in human ventricular tissues. A nucleotide sequencing of the amplified transcripts showed that exon 5 of the CFTR gene was not alternatively spliced in human atrium and ventricle, and both the exon 5 spliced and unspliced isoforms were expressed in rabbit ventricle, unlike the findings of previous reports. Our data suggest that the amount of CFTR expressed in human myocardium might be physiologically insufficient to activate detectable cAMP-dependent chloride conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahinski A, Nairn AC, Greengard P, Gadsby DC (1989) Chloride conductance regulated by cyclic AMP-dependent protein kinase in cardiac myocytes. Nature 340:718–721

    Article  PubMed  CAS  Google Scholar 

  2. Harvey RD, Hume JR (1989) Autonomic regulation of a chloride current in heart. Science 244:983–985

    Article  PubMed  CAS  Google Scholar 

  3. Harvey RD, Hume JR (1989) Isoproterenol activates a chloride current, not the transient outward current, in rabbit ventricular myocytes. Am J Physiol 257:C1177–1181

    PubMed  CAS  Google Scholar 

  4. Nagel G, Hwang TC, Nastiuk KL, Nairn AC, Gadsby DC (1992) The protein kinase A-regulated cardiac Cl channel resembles the cystic fibrosis transmembrane conductance regulator. Nature 360:81–84

    Article  PubMed  CAS  Google Scholar 

  5. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA (published erratum appears in Science (1989) 245(4925):1437). Science 245:1066–1073

    Article  PubMed  CAS  Google Scholar 

  6. Horowitz B, Tsung SS, Hart P, Levesque PC, Hume JR (1993) Alternative splicing of CFTR Cl channels in heart. Am J Physiol 264:H2214–2220

    PubMed  CAS  Google Scholar 

  7. Levesque PC, Hart PJ, Hume JR, Kenyon JL, Horowitz B (1992) Expression of cystic fibrosis transmembrane regulator Cl channels in heart. Circ Res 71:1002–1007

    PubMed  CAS  Google Scholar 

  8. Sorota S, Siegal MS, Hoffman BF (1991) The isoproterenol-induced chloride current and cardiac resting potential. J Mol Cell Cardiol 23:1191–1198

    Article  PubMed  CAS  Google Scholar 

  9. Takano M, Noma A (1992) Distribution of the isoprenaline-induced chloride current in rabbit heart. Pflügers Arch 420:223–226

    Article  PubMed  CAS  Google Scholar 

  10. James AF, Tominaga T, Okada Y, Tominaga M (1996) Distribution of cAMP-activated chloride current and CFTR mRNA in the guinea pig heart. Circ Res 79:201–207

    PubMed  CAS  Google Scholar 

  11. Oz MC, Sorota S (1995) Forskolin stimulates swelling-induced chloride current, not cardiac cystic fibrosis transmembrane-conductance regulator current, in human cardiac myocytes. Circ Res 76:1063–1070

    PubMed  CAS  Google Scholar 

  12. Sakai R, Hagiwara N, Kasanuki H, Hosoda S (1995) Chloride conductance in human atrial cells. J Mol Cell Cardiol 27:2403–2408

    Article  PubMed  CAS  Google Scholar 

  13. Berul CI, Sweeten T, Vetter VL, Morad M (1997) Lack of cystic fibrosis transmembrane regulator-type chloride current in pediatric human atrial myocytes. Life Sci 60:189–197

    Article  PubMed  CAS  Google Scholar 

  14. Escande D, Coulombe A, Faivre JF, Deroubaix E, Coraboeuf E (1987) Two types of transient outward currents in adult human atrial cells. Am J Physiol 252:H142-H148

    PubMed  CAS  Google Scholar 

  15. Powell T, Twist VW (1976) A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and a tolerance to calcium. Biochem Biophys Res Commun 72:327–333

    Article  PubMed  CAS  Google Scholar 

  16. Hagiwara N, Masuda H, Shoda M, Irisawa H (1992) Stretch-activated anion currents of rabbit cardiac myocytes. J Physiol (Lond) 456:285–302

    CAS  Google Scholar 

  17. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  18. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  19. Hume JR, Hart P, Levesque PC, Collier ML, Geary Y, Warth J, Chapman T, Horowitz B (1994) Molecular physiology of CFTR Cl−1 channels in heart. Jpn J Physiol 44 Suppl 2:S177-S182

    PubMed  CAS  Google Scholar 

  20. Warth JD, Collier ML, Hart P, Geary Y, Gelband CH, Chapman T, Horowitz B, Hume JR (1996) CFTR chloride channels in human and simian heart. Cardiovasc Res 31:615–624

    Article  PubMed  CAS  Google Scholar 

  21. Veres G, Gibbs RA, Scherer SE, Caskey CT (1987) The molecular basis of the sparsed fur mouse mutation. Science 237:415–417

    Article  PubMed  CAS  Google Scholar 

  22. Noonan KE, Roninson IB (1988) mRNA phenotyping by enzymatic amplification of randomly primed cDNA. Nucleic Acids Res 16:10366

    Article  PubMed  CAS  Google Scholar 

  23. Hart P, Warth JD, Levesque PC, Collier ML, Geary Y, Horowitz B, Hume JR (1996) Cystic fibrosis gene encodes a cAMP-dependent chloride channel in heart. Proc Natl Acad Sci USA 93:6343–6348

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yajima, T., Nagashima, H., Tsutsumi-Sakai, R. et al. Functional activity of the CFTR Cl channel in human myocardium. Heart Vessels 12, 255–261 (1997). https://doi.org/10.1007/BF02766800

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02766800

Key words

Navigation