Skip to main content
Log in

Calculation of alkali-metal dimers on the basis of a model perturbation theory

  • Optics And Spectroscopy
  • Published:
Russian Physics Journal Aims and scope

Abstract

On the basis of pseudopotential theory, within the framework of a formally accurate model perturbation theory of Rayleigh—Schrödinger type with a zero-approximation inoculating potential, the calculation of some diatomic alkali molecules in homo- and heteronuclear variants LiM (M = Li, Na, K, Rb, Cs, Fr) is considered. A local model potential of Gell-Mann type is adopted as the zero-approximation potential. The calculation results for the energy parameters — in particular, the energy of dissociation — are given; some of these results are obtained here for the first time. The calculation demonstrates the fundamental role of two basic second-order perturbation-theory effects in achieving acceptable accuracy: polarizational interaction of the valence particles through the core; and mutual screening of these particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.-P. Huber and G. Hertzberg, Constants of Diatomic Molecules [Russian translation], Vols. 1 and 2, Mir, Moscow (1984).

    Google Scholar 

  2. E. E. Nikitin and S. Ya. Umanskii, Achievements in Science and Engineering: Molecular Structure and Chemical Bonds [in Russian], No. 4, VINITI, Moscow (1980).

    Google Scholar 

  3. H. Haberland, Y. T. Lee, and P. E. Siska, "Excited states in chemical physics," in: J. W. McGowan (ed.), Advances in Chemical Physics, Vol. 5, Chap. 6, Wiley, New York (1981), pp. 457–478.

    Google Scholar 

  4. P. Durand and J. P. Malriew, in:Ab Initio Methods of Quantum Chemistry, K. P. Lawley, Chichester, et al. (eds.), Wiley, New York (1987).

    Google Scholar 

  5. P. Gombas, Pseudopotentiale, Springer, Berlin (1967).

    Google Scholar 

  6. M. Frauss and W. Stevens, J. Chem. Phys.,93, No. 6, 4236–4242 (1990).

    Article  ADS  Google Scholar 

  7. C. M. Rohlfing and P. J. Hay, J. Chem. Phys.,83, No. 9, 4641–4649 (1985).

    Article  ADS  Google Scholar 

  8. L. Bellomonte, F. Cavaliere, and G. Ferrante, J. Chem. Phys.,61, No. 8, 3225–3234 (1974).

    Article  ADS  Google Scholar 

  9. C. Bottcher and A. Dalgarno, Proc. Roy. Soc. (London) A,340, 187–196 (1974).

    Article  ADS  Google Scholar 

  10. G. K. Ivanov, Teor. Éksp. Khim.,14, No. 1, 110–115 (1978).

    Google Scholar 

  11. A. V. Nemukhin and N. F. Stepanov, Vestn. MGU, Ser. 2, Khim.,18, No. 3, 282–286 (1977).

    Google Scholar 

  12. O. V. Gritsenko and G. M. Zhidomirov, Zh. Strukt. Khim.,28, No. 2, 140–178 (1987).

    Google Scholar 

  13. A. V. Glushkov, Zh. Strukt. Khim.,34, No. 5, 3–10 (1993).

    MathSciNet  Google Scholar 

  14. A. V. Glushkov, Zh. Strukt. Khim.,36, No. 4, 608–614 (1995).

    Google Scholar 

  15. A. V. Glushkov, Zh. Strukt. Khim.,29, No. 4, 3–10 (1988);30, No. 6, 3–6 (1989);31, No. 1, 11–14 (1990);31, No. 4, 11–16 (1990).

    Google Scholar 

  16. A. V. Glushkov, N. N. Dudnik, and S. V. Malinovskaya, Zh. Strukt. Khim.,29, No. 1, 165–167 (1988).

    Google Scholar 

  17. A. V. Glushkov and S. V. Malinovskaya, Zh. Fiz. Khim.,62, No. 1, 100–105 (1988).

    Google Scholar 

  18. A. V. Glushkov, Zh. Fiz. Khim.,63, No. 11, 2895–2898 (1989);64, No. 11, 3100–3103 (1990);65, No. 11, 2970–2977 (1991).

    Google Scholar 

  19. A. V. Glushkov, Opt. Spektrosk.,77, No. 1, 5–10 (1994).

    ADS  Google Scholar 

  20. A. V. Glushkov, Izv. Vyssh. Uchebn. Zaved., Fiz.,33, No. 9, 41–46 (1990);35, No. 11, 3–9 (1992);37, No. 6, 31–38 (1994).

    Google Scholar 

  21. A. V. Glushkov, S. V. Ambrosov, T. V. Buyadzhi , et al., Zh. Prikl. Spektrosk.,64, No. 2, 260–263.

  22. V. V. Tolmachev, Adv. Chem. Phys.,14, 421–482 (1969).

    Article  Google Scholar 

  23. V. V. Tolmachev, L. N. Ivanov, and E. P. Ivanova, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 84–89 (1969).

  24. A. V. Glushkov, L. N. Ivanov, and E. P. Ivanova, autoionization Phenomena in Atoms [in Russian], MGU, Moscow (1986), p. 58.

    Google Scholar 

  25. V. S. Letochov and L. N. Ivanov, Com. At. Mol. Phys. D, No. 4, 169–192 (1985).

  26. E. P. Ianova, L. N. Ivanov, A. V. Glushkov, and A. E. Kramida, Phys. Scripta,32, No. 4, 512–524 (1985).

    ADS  Google Scholar 

  27. A. V. Glushkov and E. P. Ivanova, J. Quant. Spectr. Rad. Trans.,36, No. 2, 127–145 (1986).

    Article  ADS  Google Scholar 

  28. A. V. Glushkov and L. N. Ivanov, Phys. Lett. A,170, No. 1, 33–36 (1992).

    Article  ADS  Google Scholar 

  29. A. V. Glushkov, Pis’ma Zh. Éksp. Teor. Fiz.,55, No. 2, 104–107 (1992).

    ADS  Google Scholar 

  30. A. V. Glushkov and L. N. Ivanov, J. Phys. B,26, No. 16, L379–386 (1993).

    Article  ADS  Google Scholar 

  31. M. D. Dolgushin, Zh. Fiz. Khim.,64, No. 12, 3250–3256 (1990).

    Google Scholar 

  32. A. V. Glushkov and Yu. A. Kruglyak, Opt. Spektrosk.,58, No. 5, 1159–1162 (1985).

    Google Scholar 

  33. A. V. Glushkov, Zh. Prikl. Spektrosk.,49, No. 4, 840–843 (1988).

    MathSciNet  Google Scholar 

  34. J. Harris and R. O. Jones, J. Chem. Phys.,68, No. 4, 1190–1198 (1978).

    Article  ADS  Google Scholar 

  35. K. Miller and A. E. S. Green, J. Chem. Phys.,60, No. 7, 2426–2432 (1974).

    Article  Google Scholar 

Download references

Authors

Additional information

Odessa Hydrometeorological Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 106–113, May, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glushkov, A.V., Efimov, V.A., Gopchenko, E.D. et al. Calculation of alkali-metal dimers on the basis of a model perturbation theory. Russ Phys J 41, 492–498 (1998). https://doi.org/10.1007/BF02766513

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02766513

Keywords

Navigation