Skip to main content
Log in

Sinclair type inequalities for the local spectral radius and related topics

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We generalize the well-known Sinclair lemma for Hermitian elements, proving pointwise versions for generalized scalar operators and unbounded skew-Hermitian operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Albrecht,On some classes of generalized spectral operators, Arch. Math.,30 (1978), 297–303.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Apostol,Sur l’équivalence asymptotique des opérateurs, Rev. Roumaine Math. Pures Appl.12 (1967), 601–607.

    MATH  MathSciNet  Google Scholar 

  3. C. J. K. Batty,Dissipative mappings and well-behaved derivations, J. London Math. Soc. (2)18 (1978), 527–533.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. P. Boas, Jr.,Entire Functions, Academic Press, New York, 1954.

    MATH  Google Scholar 

  5. F. F. Bonsall and J. Duncan,Numerical Ranges of Operators, Parts I and II, London Math. Soc. Lecture Notes 2 and 10, Cambridge, 1971 and 1973.

  6. O. Bratteli and D. W. Robinson,Unbounded derivations of C*-algebras II, Commun. Math. Phys.46 (1976), 11–30.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Browder,On Bernstein’s inequality and the norm of Hermitian operators, Amer. Math. Monthly78 (1971), 871–873.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. R. Chernoff,Optimal Landau-Kolmogorov inequalities for dissipative operators in Hilbert and Banach spaces, Adv. in Math.34 (1979), 137–144.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Clancey,Seminormal Operators, Lecture Notes in Math. 742, Springer-Verlag, 1979.

  10. I. Colojoara and C. Foias,Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.

    MATH  Google Scholar 

  11. M. J. Crabb and P. G. Spain,Commutators and normal operators, Glasgow Math. J.18 (1977), 197–198.

    Article  MATH  MathSciNet  Google Scholar 

  12. N. Dunford and J. T. Schwartz,Linear Operators, Part I, Interscience Publishers, New York, 1958.

    MATH  Google Scholar 

  13. T. Furuta,On the class of paranormal operators, Proc. Japan Acad. Ser. A, Math. Sci.43 (1967), 594–598.

    MATH  MathSciNet  Google Scholar 

  14. V. I. Istratescu,Introduction to Linear Operator Theory, Marcel Dekker Inc., New York, 1981.

    MATH  Google Scholar 

  15. V. E. Katznelson,The norm of a conservative operator equals its spectral radius, Mat. Issled.5 (1970), No. 3, 186–189 (in Russian).

    MathSciNet  Google Scholar 

  16. A. N. Kolmogorov,On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Uchen. Zap. Moskov. Gos. Univ. Mat.30 (1939), No. 3, 3–16; Amer. Math. Soc. Transl. (1), No. 4 (1949), 1–19 and No. 2 (1962), 233–243.

    Google Scholar 

  17. B. Ja. Levin,Distribution of Zeros of Entire Functions, GITTL, Moscow, 1956; English transl., Amer. Math. Soc., Providence, R. I., 1964.

    Google Scholar 

  18. G. Lumer and R. S. Phillips,Dissipative operators in a Banach space, Pacific J. Math.11 (1961), 679–698.

    MATH  MathSciNet  Google Scholar 

  19. J. R. Partington,The resolvent of a Hermitian operator on a Banach space, J. London Math. Soc. (2)27 (1983), 507–512.

    Article  MATH  MathSciNet  Google Scholar 

  20. I. J. Schoenberg and A. Cavaretta,Solution of Landau’s problem concerning higher derivatives on the halfline, University of Wisconsin MRC Report No. 1050, March 1970. Also in Proc. Conf. Constructive Function Theory — Varna 1970, Sofia, 1972.

  21. A. M. Sinclair,The norm of a Hermitian element in a Banach algebra, Proc. Amer. Math. Soc.28 (1971), 446–450.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. B. Stechkin,On inequalities between the upper bounds of the derivatives of an arbitrary function on the halfline, Mat. Zametki1 (1967), No. 6, 665–673. (Amer. Math. Soc. Transl. as Math. Notes.)

    MathSciNet  Google Scholar 

  23. D. V. Widder,The Laplace Transform, Princeton, 1946.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyadzhiev, K.N. Sinclair type inequalities for the local spectral radius and related topics. Israel J. Math. 57, 272–284 (1987). https://doi.org/10.1007/BF02766214

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02766214

Keywords

Navigation