Skip to main content
Log in

Motion parallax as a source of distance information in locusts and mantids

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

This review article is devoted to results on distance measurement in locusts (e.g., Wallace, 1959; Collett, 1978; Sobel, 1990) and mantids. Before locusts or mantids jump toward a stationary object, they perform characteristic pendulum movements with the head or body, called peering movements, in the direction of the object. The fact that the animals over- or underestimate the distance to the object when the object is moved with or against the peering movement, and so perform jumps that are too long or short, would seem to indicate that motion parallax is used in this distance measurement. The behavior of the peering parameters with different object distances also indicates that not only retinal image motion but also the animal’s own movement is used in calculating the distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Autrum, H., and Wiedemann, I. (1962). Versuche über den Strahlengang im Insektenauge.Z. Naturforsch. 17b: 480–482.

    Google Scholar 

  • Barros-Pita, J. C., and Maldonado, H. (1970). A fovea in the praying mantis eye. II. Some morphological characteristics.Z. Vergl. Physiol. 67: 79–92.

    Article  Google Scholar 

  • Chapman, R. F. (1955). A laboratory study of roosting behaviour in hoppers of the African migratory locust,Locusta migratoria migratorioides.Anti-Locust Bull. 19: 1–40.

    Google Scholar 

  • Cloarec, A. (1986). Distance and size discrimination in a water stick insect,Ranatra linearis (Heteroptera).J. Exp. Biol. 120: 59–77.

    Google Scholar 

  • Collett, T. S. (1978). Peering—a locust behavior pattern for obtaining motion parallax information.J. Exp. Biol. 76: 237–241.

    Google Scholar 

  • Collett, T. S. (1987). Binocular depth vision in arthropods.TINS 10: 1–2.

    Google Scholar 

  • Collett, T. S., and Paterson, C. J. (1991). Relative motion parallax and target localisation in the locust,Schistocerca gregaria.J. Comp. Physiol. A 169: 616–621.

    Article  Google Scholar 

  • Demoll, R. (1909). Über die Beziehungen zwischen der Ausdehnung des binokularen Sehraumes und dem Nahrungserwerb bei einigen Insekten.Zool. Jb. Syst. 28: 523–530.

    Google Scholar 

  • Ellis, P. E. (1953). Social aggregation and gregarious behaviour in hoppers ofLocusta migratoria migratorioides.Behaviour 5: 225–260.

    Google Scholar 

  • Eriksson, E. S. (1980). Movement parallax and distance perception in the grasshopperPhaulacridium vittatum (Sjöstedt).J. Exp. Biol. 86: 337–341.

    Google Scholar 

  • Eriksson, E. S. (1985). Attack behaviour and distance perception in the australian bulldog antMyrmecia nigriceps.J. Exp. Biol. 119: 115–131.

    Google Scholar 

  • Goulet, M., Chapman, R., and Lambin, M. (1991). The visual perception of relative distances in the wood-cricket,Nemobius silvestris.Physiol. Entomol. 6: 357–367.

    Google Scholar 

  • Helmholtz, H. v. (1966).Handbuch der Physiologischen Optik, Voss, Hamburg.

    Google Scholar 

  • Horridge, G. A. (1977). Insects which turn and look.Endeavour 1: 7–17.

    Article  Google Scholar 

  • Horridge, G. A. (1986). A theory of insect vision: velocity parallax.Proc. R. Soc. Lond. B. 229: 13–27.

    Google Scholar 

  • Horridge, G. A. (1987). The evolution of visual processing and the construction of seeing systems.Proc. R. Soc. Lond. B 230: 279–292.

    PubMed  CAS  Google Scholar 

  • Horridge, G. A., and Duelli, P. (1979). Anatomy of the regional differences in the eye of the mantisCiulfina.J. Exp. Biol. 80: 165–190.

    Google Scholar 

  • Huber, A. (1961). Zur Biologie vonMellinus arvensis.Zool. Jb. Syst. 89: 43–118.

    Google Scholar 

  • Jeanrot, N., Campan, R., and Lambin, M. (1981). Functional exploration of the visual field of the wood-cricket,Nemobius sylvestris.Physiol. Entomol. 6: 27–34.

    Google Scholar 

  • Kennedy, J. S. (1945). Observations on the mass migration of desert locust hoppers.Trans. R. Entomol. Soc. Lond. 95: 247–262.

    Google Scholar 

  • Köck, A., Jakobs, A.-K., and Kral, K. (1993). Visual prey discrimination in monocular and binocular praying mantisTenodera sinensis during postembryonic development.J. Insect Physiol. 39: 485–491.

    Article  Google Scholar 

  • Lambin, M. (1984). Description des mouvements “oculaires” de la tete pendant la fixation visuelle chez un insecte.Biol. Behav. 9: 307–319.

    Google Scholar 

  • Land, M. F. (1981). Optics and vision in invertebrates. In Autrum, H.,et al. (eds.),Handbook of Sensory Physiology, VII/6B, Springer-Verlag, Berlin, Heidelberg, New York, pp. 471–592.

    Google Scholar 

  • Leitinger, G. (1994).Frühe postembryonale Entwicklung des Komplexauges und der Lamina gangionaris der Gottesanbeterin nach Photodegeneration der akuten Zone mit Sulforhodamin, Master thesis, University Graz, Graz.

    Google Scholar 

  • Leitinger, G., Pabst, M.-A., and Kral, K. (1994). Foveale Applikation von Sulforhodamin hat strukturelle Auswirkungen auf die postembryonale Entwicklung des Komplexauges der Gottesanbeterin.Verh. Deut. Zool. Ges. 87: 252.

    Google Scholar 

  • Liske, E., and Mohren, W. (1984). Saccadic head movements of the praying mantis, with particular reference to visual and proprioreceptive information.Physiol. Entomol. 9: 29–38.

    Google Scholar 

  • Maldonado, H., and Barros-Pita, J. C. (1970). A fovea in the praying mantis eye. I. Estimation of the catching distance.Z. Vergl. Physiol. 67: 58–78.

    Article  Google Scholar 

  • Mittelstaedt, H. (1957). Prey capture in mantids. In Scheer, B. T.,et al. (eds.),Recent Advances in Invertebrate Physiology, University of Oregon Publication, pp. 51–71.

  • Pfaff, M., and Varjú, D. (1991). Mechanisms of visual distance perception in the hawk mothMacroglossum stellatarum.Zool. Jb. Physiol. 95: 315–321.

    Google Scholar 

  • Poteser, M. (1995).Die Rolle der Eigenbewegung der Gottesanbeterin Polyspilota sp.bei der Entfernungsmessung zu stationären Objekten im Verlauf der postembryonalen Entwicklung, Master thesis, University Graz, Graz.

    Google Scholar 

  • Poteser, M., and Kral, K. (1995). Visual distance discrimination between stationary targets in praying mantis: An index of the use of motion parallaxJ. Exp. Biol. 198: 2127–2137.

    PubMed  Google Scholar 

  • Rossel, S. (1979). Regional differences in photoreceptor performance in the eye of the praying mantis.J. Comp. Physiol. 131: 95–112.

    Article  Google Scholar 

  • Rossel, S. (1983a). Binocular stereopsis in an insect.Nature 302: 821–822.

    Article  Google Scholar 

  • Rossel, S. (1983b). Binocular vision in the praying mantis.Experientia 39: 640.

    Google Scholar 

  • Rossel, S. (1986). Binocular spatial localization in the praying mantis.J. Exp. Biol. 120: 265–281.

    Google Scholar 

  • Sobel, E. C. (1990a). The locust’s use of motion parallax to measure distance.J. Comp. Physiol. 167: 579–588.

    Article  CAS  Google Scholar 

  • Sobel, E. C. (1990b). Depth perception by motion parallax and paradoxical parallax in locust.Naturwissenschaften 77: 241–243.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, M. V., Lehrer, M., Kirchner, W., and Zhang, S. W. (1991). Range perception through apparent image speed in freely-flying honeybees.Visual Neurosci. 6: 519–535.

    Article  CAS  Google Scholar 

  • von Holst, E. (1969).Zur Verhaltensphysiologie bei Tieren und Menschen, R. Piper & Co. Verlag, München.

    Google Scholar 

  • Walcher, F., and Kral, K. (1994). Visual deprivation and distance estimation in the praying mantis larvae.Physiol. Entomol. 19: 230–240.

    Google Scholar 

  • Wallace, G. K. (1958). Some experiments on form perception in the nymphs of the desert locustSchistocerca gregaria Forskål.J. Exp. Biol. 35: 765–775.

    Google Scholar 

  • Wallace, G. K. (1959). Visual scanning in the desert locustSchistocerca gregaria Forskål.J. Exp. Biol. 36: 512–525.

    Google Scholar 

  • Weismann, R. (1937). Die Orientierung der Kirschfliege (Rhagoletis cerasi) bei der Eiablage.Landw. Jb. Schweiz 51: 1080–1109.

    Google Scholar 

  • Zänkert, A. (1939). Vergleichend-morphologische und physiologisch-funktionelle Untersuchungen an Augen beutefangender Insekten.Sitzg. Ges. Naturforsch. Freunde Berlin 1–3: 82–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kral, K., Poteser, M. Motion parallax as a source of distance information in locusts and mantids. J Insect Behav 10, 145–163 (1997). https://doi.org/10.1007/BF02765480

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02765480

Key words

Navigation