Journal of Insect Behavior

, Volume 10, Issue 5, pp 737–752 | Cite as

The effect of prey movement on attack behavior and patch residence decision rules of wolf spiders (Araneae: Lycosidae)

  • Matthew H. Persons
  • George W. Uetz
Article

Abstract

We used a video imaging technique to test the effects of prey movement on attack behavior and foraging patch residence time decision rules of wolf spiders. TwelveSchizocosa ocreata (Hentz) (Lycosidae) were tested in an artificial foraging patch stimulus chamber consisting of a microscreen television displaying a computer digitized, animated image of a cricket. Four prey movement treatments were used: (1) a blank screen, (2) a stationary cricket control, (3) a cricket moving for 1 min, and (4) a cricket moving for 10 min. Spiders stayed significantly longer in treatments with higher cricket activity. Spiders also stayed longer when they attacked the stimulus than when they did not. The distribution of patch residence times of spiders indicates a decision rule based on a fixed probability of leaving.

Key words

Lycosidae decision rules prey movement prey attack wolf spiders 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, M. V. (1986). Patch choice under perceptual constraints: A cause for departures from an ideal free distribution.Behav. Ecol. Sociobiol. 19: 409–415.CrossRefGoogle Scholar
  2. Bell, W. J. (1991).Searching Behaviour: The Behavioural Ecology of Finding Resources, Champman and Hall, London.Google Scholar
  3. Charnov, E. L. (1976). Optimal foraging, the marginal value theorem.Theor. Pop. Biol. 9: 129–136.CrossRefGoogle Scholar
  4. Clark, D. L., and Uetz, G. W. (1990). Video image recognition by the jumping spider,Maevia inclemens (Araneae: Salticidae).Anim. Behav. 40: 884–890.CrossRefGoogle Scholar
  5. Clark, D. L., and Uetz, G. W. (1992). Morph-independent mate selection in a dimorphic jumping spider: Demonstration of movement bias in female choice using video-controlled courtship behaviour.Anim. Behav. 43: 247–254.CrossRefGoogle Scholar
  6. Clark, D. L., and Uetz, G. W. (1994). Signal efficacy and the evolution of male dimorphism in the jumping spider,Maevia inclemens.Proc. Natl. Acad. Sci. 90: 11954–11957.CrossRefGoogle Scholar
  7. Ford, M. J. (1978). Locomotory activity and the predation strategy of the wolf-spiderPardosa amentata (Clerck) (Lycosidae).Anim. Behav. 35: 453–461.Google Scholar
  8. Giulio, L. (1979). Optomotor responses of the jumping spiderHeliophanus muscorum Walck. (Araneae Salticidae) elicited by turning spiral.Monitore Zool. Ital. (N.S.) 13: 143–157.Google Scholar
  9. Heinrich, B. (1983). Do bumblebees forage optimally, and does it matter?Am. Zool. 23: 273–281.Google Scholar
  10. Hodge, M. A. (1987). Factors influencing web site residence time of the rob weaing spider,Micrathena gracilis.Psyche 94: 363–371.CrossRefGoogle Scholar
  11. Janetos, A. C. (1982a). Foraging tactics of two guilds of web-spinning spiders.Behav. Ecol. Sociobiol. 10: 19–27.CrossRefGoogle Scholar
  12. Janetos, A. C. (1982b). Active foragers vs. sit-and-wait predators: a simple model.J. Theor. Biol. 95: 381–385.CrossRefGoogle Scholar
  13. Janetos, A. C., and Cole, B. J. (1981). Imperfectly optimal animals.Behav. Ecol. Sociobiol. 9: 203–209.CrossRefGoogle Scholar
  14. Kareiva, P., Morse, D. H., and Eccleston, J. (1989). Stochastic prey arrivals and crab spider giving-up times: Simulations of spider performance using two simple “rules of thumb.”Oecologia 78: 547–549.CrossRefGoogle Scholar
  15. Kennedy, M., and Gray, R. D. (1993). Can ecological theory predict the distribution of foraging animals? A critical analysis of experiments on the ideal free distribution.Oikos 68: 158–166.CrossRefGoogle Scholar
  16. Land, M. F. (1972). Stepping movements made by jumping spiders during mediated by the lateral eyes.J. Exp. Biol. 57: 15–40.PubMedGoogle Scholar
  17. Land, M. F. (1971). Orientation by jumping spiders in the absence of visual feedback.J. Exp. Biol. 54: 119–139.PubMedGoogle Scholar
  18. McClintock, W. J., and Uetz, G. W. (1996). Female choice and preexisting bias: Visual cues during courtship in twoSchizocosa wolf spiders (Araneae: Lycosidae).Anim. Behav. 52: 167–181.CrossRefGoogle Scholar
  19. Morse, D. H. (1993). Choosing hunting sites with little information: Patch-choice responses of crab spiders to distant cues.Behav. Ecol. 4: 61–65.CrossRefGoogle Scholar
  20. Nishimura, K. (1994). Decision making of a sit-and-wait forager in an uncertain environment: Learning and memory load.Am. Nat. 143: 656–676.CrossRefGoogle Scholar
  21. Olive, C. W. (1982). Behavioral response of a sit-and-wait predator to spatial variation in foraging gain.Ecology 63: 912–920.CrossRefGoogle Scholar
  22. Pasquet, A., Ridwan, A., and LeBorgne, R. (1994). Presence of potential prey affects web-building in an orb-weaving spiderZygiella x-notata.Anim. Behav. 47: 477–480.CrossRefGoogle Scholar
  23. Persons, M. H., and Uetz, G. W. (1996a). The influence of sensory information on patch residence time in wolf spiders (Araneae: Lycosidae).Anim. Behav. 51: 1285–1293.CrossRefGoogle Scholar
  24. Persons, M. H., and Uetz, G. W. (1996b). Wolf spiders vary patch residence time in the presence of chemical cues from prey (Araneae: Lycosidae).J. Arachnol 24: 76–79.Google Scholar
  25. Persons, M. H., and Uetz, G. W. (1997). Residence time decisions in wolf spiders: is perceiving prey as important as eating prey?Ecoscience 4: 1–5.Google Scholar
  26. Pyke, G. H. (1984). Optimal foraging theory: A critical review.Annu. Rev. Ecol. Syst. 15: 523–575.CrossRefGoogle Scholar
  27. Pyke, G. H., Pulliam, H. R., and Charnov, E. L. (1977). Optimal foraging: a selective review of theory and tests.Q. Rev. Biol. 52: 137–154.CrossRefGoogle Scholar
  28. Riechert, S. E. (1985). Decisions in multiple goal contexts: Habitat selection of the spider,Agelenopsis aperta (Gertsch).Z. Tierpsychol. 70: 53–69.Google Scholar
  29. Rovner, J. S. (1991). Evidence for idiothetically controlled turns and extraocular photoreception in lycosid spiders.J. Arachnol. 19: 169–173.Google Scholar
  30. Rovner, J. S. (1993). Visually mediated responses in the lycosid spiderRabidosa rabida: The roles of different pairs of eyes.Mem. Queensland Mus. 33: 635–638.Google Scholar
  31. Schoener, T. W. (1971). Theory of feeding strategies.Annu. Rev. Ecol. Syst. 2: 369–404.CrossRefGoogle Scholar
  32. Seyfarth, E., Hergenroder, R., Ebbes, H., and Barth, F. G. (1982). Idiothetic orientation of a wandering spider: Compensation of detours and estimates of goal distance.Behav. Ecol. Sociobiol. 11: 139–148.CrossRefGoogle Scholar
  33. Stephens, D. W., and Krebs, J. R. (1986).Foraging Theory, Princeton University Press, Princeton, NJ.Google Scholar
  34. Suter, R. B., and Sanchez, E. (1991). Evolutionary stability of stochastic decision making in spiders: Results of a simulation.Anim. Behav. 42: 921–929.CrossRefGoogle Scholar
  35. Suter, R. B., and Walberer, L. (1989). Enigmatic cohabitation in bowl and doily spiders,Frontinella pyramitela (Araneae, Linyphiidae).Anim. Behav. 37: 402–409.CrossRefGoogle Scholar
  36. Uetz, G. W. (1992). Foraging strategies of spiders.Trends Ecol. Evol. 7: 155–159.CrossRefGoogle Scholar
  37. Valone, T. J. (1991). Bayesian and prescient assessment: foraging with pre-harvest information.Anim. Behav. 41: 569–577.CrossRefGoogle Scholar
  38. Vollrath, R. (1985). Web spider’s dilemma: A risky move or site dependent growth.Oecologia 68: 69–72.CrossRefGoogle Scholar
  39. Wise, D. H. (1993).Spiders in Ecological Webs, Cambridge University Press, Cambridge.Google Scholar
  40. Zar, J. H. (1984).Biostatistical Analysis, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Matthew H. Persons
    • 1
  • George W. Uetz
    • 1
  1. 1.Department of Biological SciencesUniversity of CincinnatiCincinnati
  2. 2.Department of Biological SciencesUnion ColegeSchenetady

Personalised recommendations