Skip to main content
Log in

Azide as a tool to evaluate sediment trap behaviour

Azid als Mittel zur Bewertung des Verhaltens von Sinkstoffallen

  • Published:
Deutsche Hydrografische Zeitschrift Aims and scope Submit manuscript

Summary

Supernatant solutions of sediment trap samples from two locations in the North Atlantic were analyzed for the remainder of sodium azide, added as a poison prior to deployment. Procedural blanks showed average losses of only 7.5 %, illustrating the tightness of the sample bottles used. Samples showed losses of around 20 %. We attempted to quantitfy this loss in terms of reaction with particles, diffusion, action of swimmers and turbulent mixing. Mechanical failure of a trap can be identified by higher loss rates. Data on currents and trap tilts measured during trap deployment were used to investigate a possible impact of the hydrographic conditions and tilt angle of the trap on its trapping efficiency. No clear relation could be established. Turbulent mixing had only small effects on the supernatant azide concentrations, and the collected particles were not removed by current events at any time during the mooring deployment.

Zusammenfassung

Die überstehenden Lösungen von Sinkstoffallenproben zweier Stationen im Nordatlantik wurden auf ihre Restkonzentration von Natriumazid untersucht, welches vor dem Aussetzen der Verankerungen den Proben als Vergiftungsmittel zugefügt worden war. Die Flaschen der Prozedur-Blindwerte zeigten einen mittleren Azidverluist von nur 7,5%, was die Dichtigkeit der verwendeten Probenfischen demonstriert. Die Proben zeigten Verluste von etwa 20%. In dieser Arbeit wird versucht, diese Verluste quantitativ durch Reaktion mit Partikeln, Diffusion, “swimmer”-Aktivität und turbulenter Durchsmischung zu erklären. Mechanische Fehlfunktionen der Sinkstoffallen machen sich durch höhere Azidverluste bemerkbar. Die Daten der über den gesamten Verankerungszeitraum kontinuierlich registrierten Strömungen und Fallen-Neigungswinkel wurden zur Untersuchung des Einflusses von hydrographischem Umfeld und Neigungswinkel der Falle auf ihre Fangefizienz verwendet. Es konnte keine eindeutige Beziehung nachgewiesen werden. Turbulente Durchmischung wirkte sich nur geringfügig auf die Azid-Überstandskonzentrationen aus, und einmal gefangene Partikel wurden zu keinem Zeitpunkt durch Strömungen wieder aus den Probenflaschen herausgespült.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, E. T.,H. B. Milburn, D. A. Tennant, 1988: Field assessment of sediment trap efficiency under varying flow conditions.Journal of Marine Research,46, 573–592.

    Article  CAS  Google Scholar 

  • Bard, A. J. andL. R. Faulkner, 1980: Electrochemical Methods — Fundamentals and Applications. Wiley, NY 1980.

    Google Scholar 

  • Blomqvist, S. and L. HÅkanson, 1981: A review on sediment traps in aquatic environments.Archiv für Hydrobiologie,91 (1), 101–132.

    Google Scholar 

  • Butman, C. A.,W. D. Grant, K. D. Stolzenbach, 1986: Predictions of sediment trap biases in turbulent flows: A theoretical analysis based on observations from the literature.Journal of Marine Research,44 (3), 601–644.

    Article  Google Scholar 

  • Cowie G. L, J. I. Hedges, 1992: Sources and reactivities of amino acids in a coastal marine environment.Limnol. Oceanogr.,34, 703–724.

    Article  Google Scholar 

  • Duinker, J. C, A. KÖRTZINGER, G. R. J. Phillips, A. Sagalevitch, 1994: Recovery of deep-sea moorings with MIR submersibles.Sea Technology,150, 34–42.

    Google Scholar 

  • Gardner, W.D., 1980a: Field assessment of sediment traps.J. Mar. Res.,38, 41–52.

    Google Scholar 

  • Gardner, W. D., 1980b: Sediment trap dynamics and calibration, a laboratory evaluation.J. Mar. Res.,38, 17–39.

    Google Scholar 

  • Gardner, W. D., 1985: The effect of tilt on sediment trap efficiency.Deep-Sea-Res.,32, 349–361.

    Article  Google Scholar 

  • Gardner, W.D., K. R. Hinga, J. Marra, 1983: Observations on the degradation of biogenic material in the deep ocean with implications on accuracy of sediment trap fluxes.Journal of Marine Research,41 (2), 195–214.

    Article  Google Scholar 

  • Gust, G.,A. F. Michaels, R. Johnson, W. G. Deuser, W. Bowles, 1994: Mooring line motions and sediment trap hydromechanics: in situ intercomparison of three common deployment designs.Deep-Sea Res.,41, 831–857.

    Article  Google Scholar 

  • Gust, G., R. H.Byrne, R. E.Bernstein, P. R. Betzer, W. Bowles, 1992: Particle fluxes and moving fluids: experience from synchronous trap collections in the Sargasso Sea.Deep-Sea Research,39 (7/8), 1071–1083.

    Article  Google Scholar 

  • Honjo, S.,D.W. Spencer, W.D. Gardner, 1992: A sediment trap intercomparison experiment in the Panama Basin 1979.Deep-Sea Res.,39, 333–358.

    Article  Google Scholar 

  • Jander, G. andE. Blasius, 1983: Lehrbuch der analytischen und präparativen anorganischen Chemie. HirzelVerlag, Stuttgart 1983.

    Google Scholar 

  • Knauer, G. A.,D. M. Karl, J. H. Martin, C. N. Hunter, 1984:in situ effects of selected preservatives on total carbon, nitrogen and metals collected in sediment traps.Journal of Marine Research,42 (2), 445–462.

    Article  CAS  Google Scholar 

  • Knauer, G. andV. Asper (co-chairs), 1989: Sediment Trap Technology and Sampling. Report of the USGOFS Working Group on Sediment Trap Technology and Sampling, Univ. of S. Mississippi, USA, 14-16. Nov 1988, USSGOFS Planning Report No. 10, WHOI, Aug. 1989.

  • Körtzinger, A.,D.E. Schulz-Bull, G. Petrick, J.C. Duinker, 1994: Evidence for dissolution of fatty acids in sediment traps: Impact on flux estimates.J. Geophys. Res.,99, C2, 3407–3415.

    Article  Google Scholar 

  • Kremling, K. andP. Streu, 1993: Saharan dust influenced element fluxes in the deep North Atlantic subtropical waters.Deep-Sea Res.,40, 1155–1168.

    Article  CAS  Google Scholar 

  • Kremling, K.,U. Lentz, B. Zeitschel, D. E. Schulz-Bull, J. C. Duinker, 1996: New type of time-series sediment trap for the reliable collection of inorganic and organic trace chemical substances.Review of Scientific Instruments,67 (12), 4360–4363.

    Article  CAS  Google Scholar 

  • Le Groupe Tourbillion, 1983: The Tourbillion Experiment, a study of a mesoscale eddy in the eastern North Atlantic.Deep Sea Res.,30, 475–511.

    Article  Google Scholar 

  • Lee, C. andC. Cronin, 1982: The vertical flux of particulate organic nitrogen in the sea: decomposition of amino acids in the Peru upwelling area and the equatorial Atlantic. Journal of Marine Research,40 (1), 227–251.

    CAS  Google Scholar 

  • Lee, C, J.I. Hedges, S.G. Wakeham, N. Zhu, 1992: Effectiveness of various treatments in retarding microbial activity in sediment trap material and their effects on the collection of “swimmers”.Limnol. Oceanogr.,37, 117–130.

    Article  CAS  Google Scholar 

  • Lee, C, S. G. Wakeham, J. I. Hedges, 1988: The measurement of oceanic particle flux-are swimmers a problem.Oceanography,1, 234–236.

    Article  Google Scholar 

  • Michaels, A. F.,M. W. Silver, M. M. Gowing, G. A. Knauer, 1990: Cryptic Zooplankton “swimmers” in upper ocean sediment traps.Deep-Sea Research,37 (8), 1285–1296.

    Article  Google Scholar 

  • Mittelstaedt, E., 1987: Cyclonic cold-core eddy in the eastern North Atlantic I: Physical Description.Mar. Ecol. Prog. Ser.,39, 145–152.

    Article  Google Scholar 

  • Müller, T.J. andG. Siedler, 1992: Multi-year current time series in the eastern North Atlantic Ocean.J. Mar. Res.,50, 63–98.

    Article  Google Scholar 

  • Siegel, D. A.,T. C. Granata, A. F. Michaels, T. D. Dickey, 1990: Mesoscale Eddy diffusion, particle sinking, and the interpretation of sediment trap data.Journal of Geophysical Research,95 (C4), 5305–5311.

    Article  Google Scholar 

  • Smith, L, H. Kruszyna, R. P. Smith, 1977: The effect of methhemoglobin on the inhibition of cytochrome c oxidase by cyanide, sulfide or azide.Biochem. Pharmacol.,26, 2247–2250.

    Article  CAS  Google Scholar 

  • Stannard, J.N.,B.L. Horecker, 1948: The in vitro inhibition of cytochrome oxidase by azide and cyanide.J. bio. Chem.,142, 599–608.

    Article  Google Scholar 

  • Staresinic, N.,K. V. Bröckel, N. Smodlaka, C.H. Clifford, 1982: A comparison of moored and free-drifting sediment traps of two different designs.J. Mar. Res.,40, 273–292.

    Google Scholar 

  • vonBodungen B, M. Wunsch, H. FÖRDERER, 1991: Sampling and analysis of suspended and sinking particles in the northern North Atlantic, in: Marine Particles: Analysis and Characterization.American Geophysical Union.63. 47–55.

    Google Scholar 

  • Wakeham, S. G.,J. I. Hedges, C. Lee, T. K. Pease, 1993: Effects of poisons and preservatives on the composition of organic matter in a sediment trap experiment.Journal of Marine Research,51, 669–696.

    Article  CAS  Google Scholar 

  • Walsh, I. D. andW. D. Gardner, 1992: A comparison of aggregate profiles with sediment trap fluxes.Deep-Sea Research,39 (11/12), 1817–1834.

    Article  CAS  Google Scholar 

  • Wever, R.,B.F. Van Gelder, D.V. Dervartanian, 1975: Biochemical and biophysical studies on cytochrome c oxidase. Biochim.Biophys. Acta,387, 189–193.

    CAS  Google Scholar 

  • Zeitzschel, B., P. Dickmann, L. Uhlmann, 1978: A new multisample sediment trap.Marine Biology,45, 285–288.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundgreen, U., Waniek, J., Schulz-Bull, D.E. et al. Azide as a tool to evaluate sediment trap behaviour. Deutsche Hydrographische Zeitschrift 49, 57–69 (1997). https://doi.org/10.1007/BF02765118

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02765118

Navigation