Israel Journal of Mathematics

, Volume 68, Issue 3, pp 257–270 | Cite as

Idempotents in compact semigroups and Ramsey theory

  • H. Furstenberg
  • Y. Katznelson


We prove a theorem about idempotents in compact semigroups. This theorem gives a new proof of van der Waerden’s theorem on arithmetic progressions as well as the Hales-Jewett theorem. It also gives an infinitary version of the Hales-Jewett theorem which includes results of T. J. Carlson and S. G. Simpson.


Left Ideal Minimal Ideal Free Semigroup Compact Semigroup Minimal Left Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BH]
    V. Bergelson and N. Hindman,Non-metrizable topological dynamics and Ramsey theory, preprint.Google Scholar
  2. [C]
    T. J. Carlson,Some unifying principles in Ramsey theory, Discrete Math.68 (1988), 117–169.CrossRefMathSciNetzbMATHGoogle Scholar
  3. [CS]
    T. J. Carlson and S. G. Simpson,A dual form of Ramsey’s theorem, Advances in Math.53 (1984), 265–290.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [E]
    R. Ellis,Introduction to Topological Dynamics, W. A. Benjamin, New York, 1969.Google Scholar
  5. [FK]
    H. Furstenberg and Y. Katznelson,A density version of the Hales-Jewett theorem for k=3, Discrete Math.75 (1989), 227–242.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [FK1]
    H. Furstenberg and Y. Katznelson,A density version of the Hales-Jewett theorem, to appear.Google Scholar
  7. [FK2]
    H. Furstenberg and Y. Katznelson,An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Analyse Math.45 (1985), 117–168.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [GR]
    R. Graham and B. Rothschild,Ramsey’s theorem for n-parameter sets, Trans. Am. Math. Soc.159 (1971), 257–292.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [HJ]
    A. W. Hales and A. I. Jewett,Regularity and positional games, Trans. Am. Math. Soc.106 (1963), 222–229.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [H]
    N. Hindman,Ultrafilters and combinatorial number theory, inNumber Theory Carbondale 1979, Lecture Notes in Math. #751, Springer-Verlag, Berlin, 1979, pp. 119–184.CrossRefGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1989

Authors and Affiliations

  • H. Furstenberg
    • 1
  • Y. Katznelson
    • 2
  1. 1.The E. Landau Center for Research in Mathematical Analysis, Department of MathematicsThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations