Abstract
We describe the algebraic structure of linearly recursive sequences under the Hadamard (point-wise) product. We characterize the invertible elements and the zero divisors. Our methods use the Hopf-algebraic structure of this algebra and classical results on Hopf algebras. We show that our criterion for invertibility is effective if one knows a linearly recursive relation for a sequence and certain information about finitely-generated subgroups of the multiplicitive group of the field.
This is a preview of subscription content, access via your institution.
References
M. F. Atyah and I. G. Macdonald,Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969.
B. Benzaghou,Algèbres de Hadamard, Bull. Soc. Math. France98 (1970), 209–252.
C. W. Curtis and I. Reiner,Representation Theory of Finite Groups and Associative Algebras, Wiley-Interscience, New York, 1962.
D. S. Passman,Infinite Group Rings, Marcel Dekker, New York, 1971.
B. Peterson and E. J. Taft,The Hopf algebra of linearly recursive sequences, Æquationes Math.20 (1980), 1–17.
A. J. van der Poorten,Some facts that should be better known, especially about rational functions, inNumber Theory and Applications (R. A. Mollin, ed.), Kluwer Acad. Publ., Dordrecht, 1989.
C. Reutenauer,Sur les éléments inversibles de l’algèbre de Hadamard des séries rationelles, Bull. Soc. Math. France110 (1982), 225–232.
C. Ronse,Feedback Shift Registers, Springer-Verlag, Berlin, 1984.
M. Sweedler,Hopf Algebras, Benjamin, New York, 1969.
Author information
Authors and Affiliations
Additional information
Supported in part by NSF Grant DMS 870-1085.
Rights and permissions
About this article
Cite this article
Larson, R.G., Taft, E.J. The algebraic structure of linearly recursive sequences under hadamard product. Israel J. Math. 72, 118–132 (1990). https://doi.org/10.1007/BF02764615
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02764615
Keywords
- Hopf Algebra
- Algebraic Structure
- Algebra Homomorphism
- Zero Divisor
- Hadamard Product