Skip to main content
Log in

Metabolic analysis of reepithelializing rabbit cornea using phosphorus-31 nuclear magnetic resonance spectroscopy

  • Laboratory Investigations
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

To investigate metabolic differences between the central and peripheral cornea the latter including the limbal area, corneas were dissected and examined using phosphorus-31 (31P) nuclear magnetic resonance spectroscopy. Since most31P signals originate from the epithelium,31P spectra of the cornea primarily represent the metabolic state of the epithelium. The spectra of the peripheral cornea showed all phosphorus resonances detected in the whole cornea; in contrast, the central cornea showed no phosphocreatine and glycerophosrylethanolamine, and only low levels of ATP. These results indicate that there is a higher metabolic activity in the peripheral epithelium, especially in the limbal area, than in the central epithelium. To evaluate the metabolic state of corneal epithelium during regeneration, we also examined corneas reepithelializing after 7 mm of central epithelial tissue had been removed by mechanical scraping. Rabbits were killed 24 and 48 h after scraping. The reepithelializing corneas clearly showed an increase in ATP, phosphocreatine, and sugar phosphates with time, although phosphorylcholine remained depressed. These findings suggest that the reepithelializing cornea has an elevated level of energy production and that it may have reached a higher steady state, thereby indicating accelerated metabolism of the epithelium during regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brooks WM, Willis RJ (1983)31P nuclear magnetic resonance study of the recovery characteristics of high energy phosphate compounds and intracellular pH after global ischemia in the perfused guinea-pig heart. J Mol Cell Cardiol 15:495–502

    Article  PubMed  CAS  Google Scholar 

  2. Burns RP, Roberts H (1969) Effect of wounding on the corneal epithelial glycogen and related enzyme. Invest Ophthalmol 6:541–547

    Google Scholar 

  3. Ebato B, Friend J, Thoft RA (1987) Comparison of central and peripheral corneal epithelium in culture. Invest Ophthalmol Vis Sci 28:1450–1463

    PubMed  CAS  Google Scholar 

  4. Flaherty JT, Weisfeldt ML, Bulkley BH, Gardner TJ, Gott VL, Jacobs WE (1982) Mechanisms of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance. Circulation 65:561–570

    PubMed  CAS  Google Scholar 

  5. Greiner JV, Kopp SJ, Gillette TE, Glonek T (1983) Phosphatic metabolites of the intact cornea by phosphorus-31 nuclear resonance. Invest Ophthalmol Vis Sci 24:535–542

    PubMed  CAS  Google Scholar 

  6. Greiner JV, Kopp SJ, Glonek T (1984) Nondestructive metabolic analysis of cornea using phosphorus nuclear magnetic resonance. Arch Ophthalmol 102:770–771

    PubMed  CAS  Google Scholar 

  7. Greiner JV, Lass JH, Glonek T (1984) Ex vivo metabolic analysis of eye bank corneas using phosphorus nuclear magnetic resonance. Arch Ophthalmol 102:1171–1173

    PubMed  CAS  Google Scholar 

  8. Greiner JV, Braude LS, Glonek T (1985) Distribution of phosphatic metabolites in the porcine cornea using phosphorus-31 nuclear magnetic resonance. Exp Eye Res 40:335–342

    Article  PubMed  CAS  Google Scholar 

  9. Hayashi K, Kenyon KR (1988) Increased cytochrome oxidase activity in alkali-burned corneas. Curr Eye Res 7:131–138

    Article  PubMed  CAS  Google Scholar 

  10. Henninghausen U, Schmidt-Martens FW, Reim M (1972) Metabolitspiegel und Enzymaktivitaten des Energie liefernden Stoffwechsels im regenerierenden Corneaepithel. Ber Dtsch Ophthalmol Ges 71:95–99

    Google Scholar 

  11. Herrmann H, Hickman FH (1948) Exploratory studies on corneal metabolism. Bull Johns Hopkins Hosp 82:225–250

    CAS  Google Scholar 

  12. Kinoshita JH (1962) Some aspects of the carbohydrate metabolism of the cornea. Invest Ophthalmol 1:178–186

    PubMed  CAS  Google Scholar 

  13. Kuwabara T, Perkins DG, Cogan DG (1976) Sliding of the epithelium in experimental corneal wounds. Invest Ophthalmol 15:4–14

    PubMed  CAS  Google Scholar 

  14. Kwok LS (1986) Kinetics of epithelial wound healing in the rabbit cornea. J Infer Deduc Biol 1:1–15

    Google Scholar 

  15. Langham ME (1954) Glycolysis in the cornea of the rabbit. J Physiol 126:396–403

    PubMed  CAS  Google Scholar 

  16. Lemp MA (1976) Cornea and sclera. Arch Ophthalmol 94:473–490

    PubMed  CAS  Google Scholar 

  17. Matsuda H, Smelser GK (1973) Electron microscopy of corneal wound healing. Exp Eye Res 16:427–442

    Article  PubMed  CAS  Google Scholar 

  18. Reim M, Schmidt-Martens FW (1967) Biochemische Veränderungen bei der Vereisung der Hornhaut in vivo. Klin Monatsbl Augenheilkd 150:96–103

    PubMed  CAS  Google Scholar 

  19. Reim M, Conze A, Kaszuba HJ (1982) Adenosine phosphate and glutathione levels in the regenerated corneal epithelium after abrasion and mild alkali burns. Graefe’s Arch Clin Exp Ophthalmol 218:42–45

    Article  CAS  Google Scholar 

  20. Schermer A, Galvin S, Sun T-T (1986) Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggest limbal location of corneal stem cells. J Cell Biol 103:49–62

    Article  PubMed  CAS  Google Scholar 

  21. Steuhl K-P, Thiel TJ (1987) Histochemical and morphological study of the regenerating corneal epithelium after limbus-to-limbus denudation. Graefe’s Arch Clin Exp Ophthalmol 225:53–58

    Article  CAS  Google Scholar 

  22. Thoft RA, Friend J (1972) Corneal epithelial glucose utilization. Arch Ophthalmol 88:58–62

    PubMed  CAS  Google Scholar 

  23. Thoft RA, Friend J (1975) Biochemical aspects of contact lens wear. Am J Ophthalmol 80:139–145

    PubMed  CAS  Google Scholar 

  24. Thoft RA, Friend J (1976) Corneal epithelial changes during midterm storage. Invest Ophthalmol 15:82–88

    PubMed  CAS  Google Scholar 

  25. Thoft RA, Friend J (1983) The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci 24:1442–1443

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH grants EY07620 (HMC) and EY05799 (KRK), and a Grant-in-Aid from Bausch and Lomb (KH)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, K., Cheng, HM., Iwasaki, M. et al. Metabolic analysis of reepithelializing rabbit cornea using phosphorus-31 nuclear magnetic resonance spectroscopy. Graefe’s Arch Clin Exp Ophthalmol 228, 73–77 (1990). https://doi.org/10.1007/BF02764295

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764295

Keywords

Navigation