Skip to main content
Log in

Stability of structural materials based on ZrO2

  • Research
  • Published:
Refractories and Industrial Ceramics Aims and scope

Abstract

The thermal and mechanical stability of some high-strength ceramic materials from partially stabilized ZrO2 manufactured from various domestic and imported powders, including coprecipitated, sol-gel, and hydrothermal ones, with the use of CIP and sintering is considered. The thermal stability is tested under conditions close to the operating ones, i.e., under long-duration holds at 1000 and 1550°C and in water quenching. The mechanical stability is determined in impact-erosion wear and under combined loads of high pressure and multiple indentations by solid particles. It is shown that all the materials undergo degradation of various degrees but those most durable under normal conditions (hydrothermal and sol-gel materials, ceramics manufactured from imported press powders) are least stable. They have widely fluctuating properties under cyclic high-temperature loads, endure 900-1400°C, and withstand a pressure of at most 1.0-2.0 GPa in an abrasive, just like standard corundum ceramics; however, they are characterized by maximum wear resistance. At the same time, an original material from commercial coprecipitated PSZ powder has quite different features; its thermal stability allows it to withstand repeated quenchings from 1550°C in water, and the mechanical strength can attain 2.6-2.8 GPa, exceeding the strength of quenched tool steels in similar situations. Due to its refractoriness (2700°C) and chemical stability this material is the most versatile in operating under extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ya. Akimov, I. Yu. Prokhorov, I. V. Gorelik, et al., “The role of cold isostatic pressing in forming the properties of ceramics based on ZrO2 obtained from ultradisperse powders,”Ogneupory, No.2, 12-19(1995).

  2. I. Yu. Prokhorov, G. Ya. Akimov, V. M. Timchenko, and A. D. Vasil’ev, “Cold isostatic pressing as a method for manufacturing high-strength ceramic materials based on ZrO2,”Ogneup. Tekh. Keram., No. 8, 12-17 (1997).

  3. I. Yu. Prokhorov, “Zirconia materials from coprecipitated powders,”Ogneup. Tekh. Keram., No. 12, 2–6 (1997).

  4. M. Yosimura, T. Noma, K. Kavabata, and S. Somiya, “Effect of the temperature and high pressure of water on the low-temperature destabilization of tetragonal zirconia stabilized by yttrium oxide,”Nippon Seramikkusu Kekay Galuszyutsu Rombuksi,96(3), 265–270 (1988).

    Google Scholar 

  5. Chen San-Yuan and Lu Hong-Yang, “Sintering of 3 mol.% Y2O3-TZP and its fracture ageing treatment,”J. Mater. Sci.,23(4), 1195–1200(1988).

    Article  Google Scholar 

  6. R. L. K. Matsumoto, “Strength recovery in degraded yttriadoped tetragonal zirconia polycrystals,”J. Am. Ceram. Soc.,68(8), 213 (1985).

    Article  Google Scholar 

  7. Lu Hong-Yang, Chen San-Yuan, “Low-temperature ageing oft- ZrO2 polycrystals with 3 mol.% Y2O3,”J. Am. Ceram. Soc.,70(8), 537 -541 (1987).

    Article  Google Scholar 

  8. J. L. Drummond, “In vitro ageing of yttria-stabilized zirconia,”J. Am. Ceram. Soc.,72(4), 675–676 (1989).

    Article  CAS  Google Scholar 

  9. T. V. Chusovitina, Yu. I. Komolikov, and S. I. Stepanov, “Stability of properties of ceramic materials based on partially stabilized zirconia,”Steklo Keram., No. 11-12, 33-34 (1982).

  10. T. T. Lepisto and T. A. Mantyla, “A model for structural degradation of Y-TZP ceramics in humid atmosphere,”Ceram. Eng. Sci. Prod.,10(7-8), 1362 (1989).

    Google Scholar 

  11. D. L. Davidson, J. B. Campbell, and J. Lankford, “Fatigue crack growth through partially stabilized zirconia at ambient and elevated temperatures,”Acta Met. Mater.,39(6), 1319–1330 (1991).

    Article  CAS  Google Scholar 

  12. M. T. Hernandez, J. R. Jurado, P. Duran, and J. L. Fierro, “Subeutectoid degradation of yttria-stabilized tetragonal zirconia polycrystal and ceria-doped yttria-stabilized tetragonal zirconia polycrystal ceramics,”J. Am. Ceram. Soc.,74(6), 1254 -1258(1991).

    Article  CAS  Google Scholar 

  13. K. Kuroda, H. Saka, S. Iio, et al., “Tetragonal-to-monoclinic transformation in ZrO2-Y2O3 ceramics,” in:Martensit. Transform.: Proc. Int. Conf. (ICOMAT-86), Nara, Aug. 26–30, 1986,Sendai (1987), pp. 1161-1166.

  14. K. Sato and M. Shimada, “Control of tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia in hot water,”J. Mater. Sci.,20 (11), 3988–3992 (1985).

    Article  CAS  Google Scholar 

  15. Advanced Zirconia Ceramics for Your Toughest Applications, ICI Ceramics Inc., Ausburn CA (1992).

  16. D. R. Clarke and F. Adar, “Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia,”J. Am. Ceram. Soc.,65(6), 284–288(1982).

    Article  CAS  Google Scholar 

  17. G. N. Morscher, P. Pirouz, and A. N. Heuer, “Temperature dependence of hardness in yttria-stabilized zirconia single crystals,”J. Am. Ceram. Soc.,74(3), 491–500 (1991).

    Article  CAS  Google Scholar 

  18. J. Martinez-Fernandez, M. Jimenez-Melendo, A. Domingerz-Rodrigues, and A. H. Heuer, “Microindentation-induced transformation in 3.5 mol.%-yttria-partially-stabilized zirconia single crystals,”J. Am. Ceram. Soc.,74(5), 1071–1081 (1991).

    Article  CAS  Google Scholar 

  19. O. N. Grigor’ev, G. S. Krivoshei, N. A. Stel’mashenko, et al., “Phase transformations in mechanical treatment and properties of surface layers in zirconia ceramics,”Poroshk. Metallurg., No. 5, 30-33(1991).

  20. L. K. Lenz and A. N. Heuer, “Stress-induced transformation during subcritical crack growth in partially stabilized zirconia,”J. Am. Ceram. Soc.,65(11), 192–194 (1982).

    Article  Google Scholar 

  21. D. B. Marshall and M. R. James, “Reversible stress-induced martensitic transformation in ZrO2,”J. Am. Ceram. Soc.,69(3), 215–217(1986).

    Article  CAS  Google Scholar 

  22. D. L. Davidson, J. B. Campbell, and J. Lankford, “Fatigue crack growth through partially stabilized zirconia at ambient and elevated temperatures,”Acta Met. Mater.,39(6), 1319–1330 (1991).

    Article  CAS  Google Scholar 

  23. C. J. Howorth, W. E. Lee, W. M. Rainforth, and P. F. Messer, “Contamination rates from Ceand Y-TZP ball milling media,”Br. Ceram. Trans, and J.,90(1), 18–21 (1991).

    CAS  Google Scholar 

  24. D. S. Rutman, Yu. S. Toropov, S. Yu. Pliner, et al. (eds.),Zirconia High-Refractory Materials [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  25. P. J. Whalen, F. Reidinger, S. T. Correale, and J. Marti, “Yttria migration in Y-PSZ during high-temperature annealing,”J. Mater. Sci.,22(12), 4465–4469 (1987).

    Article  CAS  Google Scholar 

  26. A. M. Gavrish, B. Ya. Sukharevskii, E. I. Zoz, and P. P. Krivoruchko, “Effect of impurities on the decomposition of solid solutions based on zirconia,”Izv. Akad. Nauk SSSR, Neorg. Mater.,5(6), 1103–1106(1969).

    CAS  Google Scholar 

  27. M. Riihle and A. G. Evans, “High toughness ceramics and ceramic composites,”Progr. Mater. Sci.,33, 85–167 (1989).

    Article  Google Scholar 

  28. M. J. Ready and A. N. Heuer, “Annealing of test specimens of high-toughness magnesia-partially-stabilized zirconia,”J. Am. Ceram. Soc.,71(1), 2–6 (1988).

    Google Scholar 

  29. M. V. Swain, R. S. Garvie, and R. J. Hannink, “Influence of thermal decomposition on the mechanical properties of magnesiastabilized cubic zirconia,”J. Am. Ceram. Soc.,66(5), 358 -362 (1983).

    Article  CAS  Google Scholar 

  30. G. Ya. Akimov, V. M. Timchenko, and N. G. Labinskaya, “Effect of the method of stabilization of the tetragonal phase on the mechanical properties of polycrystalline zirconia,”Fiz. Tverd. Tela,37, Issue 7, 2146–2161 (1995).

    CAS  Google Scholar 

  31. E. G. Subbarao, H. S. Maiti, and K. K. Srivastava, “Martensitic transformation in zirconia,”Phys. Stat. Sol. (a),21(1), 9–40 (1974).

    Article  CAS  Google Scholar 

  32. D. F. Kalinovich, L. I. Kuznetsova, and É. T. Denisenko, “Zirconia: properties and use (a review of foreign literature),”Poroshk. Met., No. 11, 98-103 (1987).

    Google Scholar 

  33. A. G. Gashchenko, G. A. Gogotsi, A. G. Karaulov, et al., “A study of the thermal stability and mechanical characteristics of zirconia-based materials,”Problemy Proch., No. 6, 76 -80 (1974).

    Google Scholar 

  34. N. A. Toropov, V. P. Barzakovskii, et al.,Phase Diagrams of Silicate Systems, Issue 1, Binary Systems [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  35. J. K. Lancaster, Y. A. H. Marshall, and A. G. Atrins, “The role of water in the wear of ceramics,”J. Phys. D.,25(1A), A205-A211 (1992).

    Article  CAS  Google Scholar 

  36. G. G. Gnesin (ed.),Ceramic Tool Materials [in Russian], Tekhnika, Kiev (1991).

    Google Scholar 

  37. Y. M. Chen, S. C. Pavy, and B. Rigaut, “Effets de l’humidite sur le comportement des ceramiques AI2O3, Si3N4 et PSZ en frottement á grande vitresse sur acier,”Mater. Techn.,79, Num. spec., 40–44(1991).

    CAS  Google Scholar 

  38. R. H. J. Hannink, M. J. Murray, and H. G. Scott, “Friction and wear of partially stabilized zirconia: basic science and practical applications,”Wear,100, 355–366 (1984).

    Article  CAS  Google Scholar 

  39. H. Hasegawa, “Surface structure of Y-TZP,”J. Jpn. Inst. Metals,52(6), 603–608 (1988).

    CAS  Google Scholar 

  40. A. G. Dobrovol’skii and P. I. Koshelenko (eds.),Abrasion Strength of Materials, A Reference Book [in Russian], Tekhnika, Kiev (1989).

    Google Scholar 

  41. “Ceramic wear-resistant parts expected to experience rapid growth,”Interceram., 41(6), 435 (1992).

  42. “Nilcra advanced ceramics have long life,”Austral. Mining, 79(12), 24-25 (1987).

  43. “Orders secured for ceramic brake piston,”Ceram. Ind. Int., 101(1088), 6 (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokhorov, I.Y., Akimov, G.Y. & Timchenko, V.M. Stability of structural materials based on ZrO2 . Refract Ind Ceram 39, 189–197 (1998). https://doi.org/10.1007/BF02764271

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764271

Keywords

Navigation