Skip to main content
Log in

Skin pigmentation characterized by visible reflectance measurements

  • Original Articles
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The epidermal melanin content affects most dermatologic treatments involving light, and can limit the therapeutic success significantly. Therefore, knowledge of the optical properties of skin is required. This study investigates how the concentration of melanin influences visible reflectance spectra of skin and the relationship to threshold radiant energy fluence for melanosomal or melanocyte destruction. Reflectance spectra were measured at 28 pigmented human skin sites in vivo. For Asian and Caucasian subjects, measured reflectance values varied over the same range, while significantly lower values were recorded for African individuals. Epidermal melanin absorption coefficients measured at 694 nm were about 2500 m-1 for African, and 300–1200 m-16 for Caucasian and Asian skin. Twenty-five skin sites were exposed to ruby laser pulses (694 nm), where the pulse duration was long enough to allow heat diffusion between melanosomes. Hypopigmentation occurred, on average, at 12 and 26 J cm-2 for sun-exposed and sun-protected white skin, respectively, while slightly lower threshold values resulted from the measured spectra. As visible reflectance spectra reveal information regarding skin pigmentation and individual threshold doses for melanosomal damage, a use as a diagnostic tool in various dermatological laser treatments is apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson RR, Parrish JA. The optics of human skin.J Invest Dermatol 1981,77:13–9

    Article  PubMed  CAS  Google Scholar 

  2. Taber’s Cyclopedic Medical Dictionary. FA. Philadel- phia: Davis Co. 17th edn, 1993

  3. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation.Science 1983,220:524–7

    Article  PubMed  CAS  Google Scholar 

  4. Ara G, Anderson RR, Mandel KG et al. Irradiation of pigmented melanoma cells with high intensity pulsed radiation generates acoustic waves and kills cells.Lasers Surg Med 1990,10:52–9

    Article  PubMed  CAS  Google Scholar 

  5. Hruza GJ, Dover JS, Flotte TJ et al. Q-Switched ruby laser irradiation of normal human skin.Arch Dermatol 1991,127:1799–805

    Article  PubMed  CAS  Google Scholar 

  6. Jacques SL, McAuliffe DJ. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation.Photochem Photobiol 1991,53:769–75

    PubMed  CAS  Google Scholar 

  7. Hohenleutner U, Hilbert M, Wlotzke U, Landthaler M. Epidermal damage and limited coagulation depth with the flashlamp-pumped pulsed dye laser: a histochemical study.J Invest Dermatol 1995,104:798–802

    Article  PubMed  CAS  Google Scholar 

  8. Svaasand LO, Norvang LT, Fiskerstrand EJ et al. Tissue parameters determining the visual appearance of normal skin and port-wine stains.Lasers Med Sci 1995,10:55–65

    Article  Google Scholar 

  9. Norvang LT, Fiskerstrand EJ, Bakken B et al. The influence of tissue parameters on visual reflectance spectra of port-wine stains and normal skin.SPIE Europto Series 1995,2623:2–14

    Google Scholar 

  10. Kollias N, Baqer A. On the assessment of melanin in human skin in vivo.Photochem Photobiol 1986,43:49–54

    PubMed  CAS  Google Scholar 

  11. Hajizadeh-Saffar M, Feather JW, Dawson JB. An investigation of factors affecting the accuracy of in vivo measurements of skin pigments by reflectance spectrophotometry.Phys Med Biol 1990,35:1301–15

    Article  PubMed  CAS  Google Scholar 

  12. Bridelli MG, Crippa PR. Optical properties of melanin; a comment.Appl Opt 1982,21:2669–70

    CAS  Google Scholar 

  13. Sliney D, Wolbarsht M.Safety with Lasers and Other Optical Sources. A Comprehensive Handbook, 4th edn. New York: Plenum Press, 1980:pp. 94–5

    Google Scholar 

  14. Moschella SL, Hurley HJ.Dermatology, 3rd edn. London: W. B. Saunders, 1992:pp. 1421–35

    Google Scholar 

  15. Moschella SL, Hurley HJ.Dermatology, 3rd edn. London: W. B. Saunders, 1992:pp. 24–8

    Google Scholar 

  16. Scheibner A, McCarthy WH, Nordlund J. Age and seasonal variation in melanocyte distribution in normal human epidermis. In: Kligman AM, Takase Y, Gilchrest BA et al. (eds)Cutaneous Aging. Tokyo: University of Tokyo Press, 1988:p. 201

    Google Scholar 

  17. Lever WF, Schaumburg-Lever G.Histopathology of the Skin, 7th edn. Philadelphia: J. B. Lippincott Company, 1990:p. 10

    Google Scholar 

  18. van Gemert MJC, Jacques SL, Sterenborg HJCM, Star WM. Skin optics.IEEE Trans Biomed Eng 1989,36:1146–54

    Article  PubMed  Google Scholar 

  19. Wan S, Anderson RR, Parrish JA. Analytical modeling for the optical properties of the skin with in vitro and in vivo applications.Photochem Photobiol 1981,34:493–9

    PubMed  CAS  Google Scholar 

  20. Anderson RR, Parrish JA. Optical properties of human skin. In: Regan JD, Parrish JA (eds)The Science of Photomedicine. New York: Plenum Press, 1982:pp. 147–94

    Google Scholar 

  21. Jacques SL, Alter CA, Prahl SA. Angular dependence if He-Ne laser light scattering by human dermis.Laser Life Sci1987,1:309–33

    Google Scholar 

  22. Graaff R, Dassel ACM, Koelink MH et al. Optical properties of human dermis in vitro and in vivo.Appl Opt 1993,32:435–47

    Google Scholar 

  23. Hardy JD, Hammel HT, Murgatroyd D. Spectral transmittance and reflectance of excised human skin.J Appl Physiol 1956,9:257–64

    PubMed  CAS  Google Scholar 

  24. Prahl SA.Light Transport in Tissue. Ph.D. dissertation, 1988, cited in Graaff et al. (ref. 22)

  25. Hillenkamp F. Interaction between laser radiation and biological systems. In: Hillenkamp F, Pratesi R, Sacci C (eds)Lasers in Biology and Medicine. New York: Plenum Press, 1979:pp. 57, 61

    Google Scholar 

  26. van Gemert MJC, Welch AJ, Miller ID, Tan OT. Can physical modeling lead to an optimal laser treatment strategy for port-wine stains? In: Wolbarsht ML (ed)Laser Applications in Medicine and Biology. New York: Plenum Press, 1991,5: 199–275

    Google Scholar 

  27. Svaasand LO, Milner TE, Anvari B et al. Epidermal heating during laser induced photothermolysis of port wine stains: modeling melanosomal heating after dynamic cooling of the skin surface. SPIEEuropto Series 1994,2323:366–77

    Google Scholar 

  28. Norvang LT, Fiskerstrand EJ, Nelson JS et al. Epidermal melanin absorption in human skin. SPIEEuropto Series 1995,2624:143–54

    Google Scholar 

  29. Nelson JS, Milner TE, Anvari B et al. Dynamic epidermal cooling during pulsed laser treatment of port wine stain. A new methodology with preliminary clinical evaluation.Arch Dermatol 1995,131:695–700

    Article  PubMed  CAS  Google Scholar 

  30. Haskell RC, Svaasand LO, Tsay T-T et al. Boundary conditions for the diffusion equation in radiative transfer.J Opt Soc Am A 1994,11:2727–41

    Article  CAS  Google Scholar 

  31. Duck FA.Physical Properties of Tissue. London: Academic Press, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norvang, L.T., Milner, T.E., Nelson, J.S. et al. Skin pigmentation characterized by visible reflectance measurements. Laser Med Sci 12, 99–112 (1997). https://doi.org/10.1007/BF02763978

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02763978

Key words

Navigation