Poly(aspartic acid): Synthesis, biodegradation, and current applications

  • S. Roweton
  • S. J. Huang
  • G. Swift


Poly(aspartic acid) is a biodegradable, water-soluble polymer that is valuable in numerous industrial applications. A variety of synthetic methods can be utilized to prepare poly(aspartic acid) and related polymeric materials with a range of tailored physical and chemical characteristics. This review of current investigative and patent literature describes methods of synthesis, biodegradative studies, and important current and potential applications of both poly(aspartic acid) homopolymers and copolymers.

Key words

Poly(aspartic acid) biodegradation water-soluble polymers N-carboxyanhydrides polysuccinimides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Swiftet al. (1994)Polym. Preprints 35(2), 423–424.Google Scholar
  2. 2.
    S. I. Ertel and J. Kohn (1992)PSME 66, 224–225.Google Scholar
  3. 3.
    T. Hayashi and M. Iwatsuki (1990)Biopolymers 29, 549–557.CrossRefGoogle Scholar
  4. 4.
    V. S. Raoet al. (1993)Makromol. Chem. 194, 1905–1104.CrossRefGoogle Scholar
  5. 5.
    T. Hayashiet al. (1990)J. Appl. Polym. Sci. 39, 1803–1814.CrossRefGoogle Scholar
  6. 6.
    V. Saudek (1981)Biopolymers 20, 1615–1623.CrossRefGoogle Scholar
  7. 7.
    V. Saudek (1981)Biopolymers 20, 1625–1633.CrossRefGoogle Scholar
  8. 8.
    V. Saudeket al. (1982)Polymers 21, 1011–1020.Google Scholar
  9. 9.
    L. P. Koskanet al.,Polyaspartic Acid Manufacture, U.S. Patent 5,315,010.Google Scholar
  10. 10.
    L. P. Koskanet al, Manufacture of Polyaspartic Acids, U.S. Patent 5,221,733.Google Scholar
  11. 11.
    L. P. Koskan and K. C. Low,Polyaspartic Acid as a Calcium Sulfate and a Barium Sulfate Inhibitor, U.S. Patent 5,116,513.Google Scholar
  12. 12.
    M. Kroneret al., DE 43 23 191 Al.Google Scholar
  13. 13.
    T. A. Cassata,Polyanhydroaspartic Acid and Method of Dry Manufacture of Polymers, U.S. Patent, 5,219, 986.Google Scholar
  14. 14.
    G. Swiftet al., EP 0644 275 A2.Google Scholar
  15. 15.
    S. H. Ramsey,Preparation of Anhydropolyamino Acids at Temperatures of 350‡C or Above US Patent 5,449,748.Google Scholar
  16. 16.
    A. P. Wheeler and L. P. Koskan (1993)Mater. Res. Soc. Symp. Proc. 292, 277–283.Google Scholar
  17. 17.
    G. Swiftet al., Solvent Process for Preparing Polysuccinimides from Aspartic Acid Using a Polyoxyalkylene, EP 578 449 A1.Google Scholar
  18. 18.
    G. Swiftet al., Process for Preparing Polysuccinimides from Aspartic Acid, U.S. Patent 5,380,817.Google Scholar
  19. 19.
    L. P. Koskan and A. R. Y. Meah,Production of High-Molecular-Weight Polysuccinimide and High-Molecular-Weight Poly(aspartic Acid) from Maleic Anhydride and Ammonia, U.S. Patent 5,219,952.Google Scholar
  20. 20.
    G. Boehmke,Manufacture of Poly (aspartic Acid) and Its Salts from Maleic Acid and Ammonia, German Patent DE 86-3626672.Google Scholar
  21. 21.
    G. Boehmke and G. Schmitz,Process for the Preparation of Polysuccinimide, Polyaspartic Acid and Their Salts, U.S. Patent 5,468,838.Google Scholar
  22. 22.
    G. Boehmke and G. Schmitz, DE 43 10 503 A1.Google Scholar
  23. 23.
    L. L. Wood,Preparation of Salt of Polyaspartic Acid by High Temperature Reaction, U.S. Patent 5,288,783.Google Scholar
  24. 24.
    L. L. Wood and G. J. Calton,Copolymers of Polyaspartic Acid and Polycarboxylic Acids and Polyamines, U.S. Patent 5,408,028.Google Scholar
  25. 25.
    L. L. Wood and G. J. Calton,Amino Acid Copolymers of Maleic Acid, U.S. Patent 5,408,029.Google Scholar
  26. 26.
    H. Iharaet al. (1986)Polym. Commun. 27, 282–285.Google Scholar
  27. 27.
    N. Nishiet al. (1991)Makromol. Chem. 192, 1789–1798.CrossRefGoogle Scholar
  28. 28.
    N. Nishiet al. (1991)Makromol. Chem. 192, 1799–1809.CrossRefGoogle Scholar
  29. 29.
    J. Z. Yanget al. (1993)Polym. Preprints 34(1), 536–537.Google Scholar
  30. 30.
    J. Z. Yanget al. (1993)Polym. Preprints 34(1), 538–539.Google Scholar
  31. 31.
    J. Z. Yanget al. (1993)Polym. Preprints 34(2), 420–421.Google Scholar
  32. 32.
    M. Kimuraet al. (1982)Makromol. Chem. 183, 1393–1400.CrossRefGoogle Scholar
  33. 33.
    D. D. Alfordet al. (1994)J. Environ. Polym. Degrad. 2, 225–236.CrossRefGoogle Scholar
  34. 34.
    B. Potthoff-Karlet al., DE 43 10 995 A1.Google Scholar
  35. 35.
    A. Du Voselet al., EP 0 612 842 A2.Google Scholar
  36. 36.
    A. Ponce and F. Tournilhac, EP 0 511 037 A1.Google Scholar
  37. 37.
    M. Kroneret al., DE 43 00 020 A1.Google Scholar
  38. 38.
    J. Donachy and S. C. Sikes,Water-Insoluble Crosslinked Poly(amino Acid) Superabsorbants, WO 9320856 A1.Google Scholar
  39. 39.
    A. Nagatomoet al, Superabsorbent Polymer and Process for Producing Same, U.S. Patent 5,461,085.Google Scholar
  40. 40.
    M. Maedaet al. (1984)J. Am. Chem. Soc. 106, 250–251.CrossRefGoogle Scholar
  41. 41.
    M. Yokoyamaet al. (1990)Makromol. Chem. 191, 301–311.CrossRefGoogle Scholar
  42. 42.
    B. K. Kishoreet al. (1992)J. Pharmacol. Exp. Ther. 262, 424–432.Google Scholar
  43. 43.
    S. J. Kohlheppet al. (1992)7.Pharmacol. Exp. Ther. 263, 1464–1470.Google Scholar
  44. 44.
    M. K. Reinhardet al. (1994)Antimicrob. Agents Chemother. 38, 79–82.Google Scholar
  45. 45.
    G. Kwonet al. (1993) in Takagi, Toshinoriet al. (Eds.),Proceedings of the International Conference on Intelligent Materials, 1st Naka-gun, Japan, March 23–25, 1992.Google Scholar
  46. 46.
    M. Yokoyama and S. Inoue (1989)Makromol. Chem. 190, 2041–2054.CrossRefGoogle Scholar
  47. 47.
    F. Zuninoet al. (1982)Int. J. Cancer 30, 465–470.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • S. Roweton
    • 1
  • S. J. Huang
    • 1
  • G. Swift
    • 2
  1. 1.Polymer Science ProgramInstitute of Materials Science, University of ConnecticutStorrs, Connecticut
  2. 2.Rohm and Haas CompanySpring House, Pennsylvania

Personalised recommendations