The biodegradation of lactic acid-based poly(ester-urethanes)


The biodegradability of lactic acid based poly(ester-urethanes) was studied using the headspace test method, which was performed at several elevated temperatures. The poly(ester-urethanes) were prepared using a straight two-step lactic acid polymerization process. The lactic acid is first condensation polymerized to a low molecular weight hydroxyl-terminated telechelic prepolymer and then the molecular weight is increased with a chain extender such as diisocyanate. In the biodegradation studies the effect of different stereostructures (different amounts of D-units in the polymer chain), the length of ester units, and the effect of crosslinking on the biodegradation rate were studied. The results indicate that poly(ester-urethanes) do not biodegrade at 25‡C, but at elevated temperatures they biodegrade well. The different stereostructures and crosslinking have a strong influence on the biodegradation rate. The length of ester units in the polymer chain also affects the biodegradation rate, but much less than crosslinking and stereostructure.

This is a preview of subscription content, access via your institution.


  1. 1.

    R. A. Pathirana and K. J. Seal (1985)Int. Biodeter. 21, 41–49.

    CAS  Google Scholar 

  2. 2.

    M. J. Kay, R. W. McCabe, and L. H. G. Morton (1993)Int. Biodeter. 31, 209–225.

    Article  CAS  Google Scholar 

  3. 3.

    S. J. Huang, C. Marcri, M. Roby, C. Benedict, and J. A. Cameron (1981)Am. Chem. Soc. Symp. Ser. 172, 471–487.

    CAS  Google Scholar 

  4. 4.

    M. J. Kay, L. H. G. Morton, and E. L. Prince (1991)Int. Biodeter. 27, 205–222.

    Article  CAS  Google Scholar 

  5. 5.

    S. Owen, M. Masaoka, R. Kawamura, and N. Sakota (1995)J.M.S. Pure Appl. Chem. A32(4), 843–850.

    CAS  Google Scholar 

  6. 6.

    I. Grizzi, H. Garreau, S. Li, and M. Vert (1995)Biomaterials 16, 305–311.

    Article  CAS  Google Scholar 

  7. 7.

    S. Gogolewski and A. J. Pennings (1983)Colloid Sci. 261, 477–484.

    Article  CAS  Google Scholar 

  8. 8.

    J. E. Bergsma, F. R. Rozema, R. R. M. Bos, G. Boering, W. C. de Bruijn, and A. J. Pennings (1995)Biomaterials 16, 264–274.

    Google Scholar 

  9. 9.

    S. Li, M. Garreau, and M. Vert (1990)J. Mater. Sci. Mater. Med. 1, 198–206.

    Article  CAS  Google Scholar 

  10. 10.

    J. SeppÄlÄ, J.-F. Selin, and S. Tao, FI. Pat 92592, App. 16.10.1992, Acc. 12.12.1994.

  11. 11.

    K. Hiltunen, M. HÄrkönen, T. VÄÄnÄnen, and J. V. SeppÄlÄ (1996)Macromolecules 29, 8677–8682.

    Article  CAS  Google Scholar 

  12. 12.

    K. Hiltunen, M. HÄrkönen, T. VÄÄnÄnen, and J. V. SeppÄlÄ (1995) Poster at PAT95, Pisa, June.

  13. 13.

    K. Hiltunen, J. V. SeppÄlÄ, and M. HÄrkönen (1997)J. Appl. Polym. Sci. 63, 1091–1100.

    Article  CAS  Google Scholar 

  14. 14.

    M. HÄrkönen, K. Hiltunen, M. Malin, and J. V. SeppÄlÄ (1995)J.M.S. Pure Appl. Chem. A32(4), 857–862.

    Article  Google Scholar 

  15. 15.

    M. ItÄvaara and M. Vikman (1995)Chemosphere 31, 4359–4373.

    Article  Google Scholar 

  16. 16.

    M. Vikman, M. ItÄvaara, and K. Poutanen (1995)J. Environ. Polym. Degrad. 3, 23–29.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jukka V. SeppÄlÄ.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hiltunen, K., SeppÄlÄ, J.V., ItÄvaara, M. et al. The biodegradation of lactic acid-based poly(ester-urethanes). J Environ Polym Degr 5, 167–173 (1997).

Download citation

Key words

  • Biodegradation
  • poly(ester-urethanes)
  • headspace test method
  • lactic acid