Skip to main content
Log in

Degradable polymers: The role of the degradation environment

  • Contents
  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

The degradability of several degradable polymers was examined using three types of degradation environments. These include exposure in a laboratory-scale composting test system containing material representative of the organic fraction of municipal solid waste (MSW), exposure in a thermal hydrolytic environment consisting of water at 60‡C, and exposure in a thermal-oxidative, dry oven environment of 60‡C. The results of the investigation clearly indicate that, in addition to chemical and biological activity which can lead to polymer degradation, physical restructuring and reorganization of the macromolecular structure may also occur at temperatures typically found in a compost environment, resulting in changes in the mechanical properties of the polymer films. In the case of the polyethylene-modified polymers evaluated in this study, all behaved similarly, but differently from the other polymer types. The polyethylene-based films appeared to be susceptible to oxidative degradation and should degrade in a composting environment providing that there is sufficient air in contact with the film for a sufficient period of time. However, when exposed in a laboratory composter, it appears that although ideal temperature-time curves may be obtained, the test time period was insufficient in comparison to the induction period required to achieve the desired thermal oxidative degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Scott (1990)Polym. Degrad. Stab. 29, 135–154.

    Article  CAS  Google Scholar 

  2. J. D. Evans and S. K. Sikdar (1990)Chemtech 20(1), 38–42.

    CAS  Google Scholar 

  3. M. M. Nir, J. Milty, and A. Ram (1993)Plastics Eng. 393, 75–93.

    Google Scholar 

  4. S. J. Huang (1995)J.M.S. Pure Appl. Chem. A32(A), 593–597.

    Article  CAS  Google Scholar 

  5. L. R. Krupp and W. J. Jewell (1992)Environ. Sci. Technol. 26, 193–198.

    Article  CAS  Google Scholar 

  6. M. Waland, A. Daro, and C. David (1995)Polym. Degrad. Stab. 48, 275–289.

    Article  Google Scholar 

  7. P. B. Shah, S. Bandopadhyay, and J. R. Bellare (1995)Polym. Degrad. Stab. 47, 165–173.

    Article  CAS  Google Scholar 

  8. G. Swift (1995)J.M.S. Pure Appl. Chem. A32(4), 641–651.

    CAS  Google Scholar 

  9. R. B. Monk (1994)World Wastes 37(5), CS1–14.

    Google Scholar 

  10. N. Goldstein and R. Steuteville (1994)Biocycle 35(11), 30–35.

    Google Scholar 

  11. U.S. Environmental Protection Agency (1994)Characterization of Municipal Solid Waste in the United States: 1994 Update, EPA-S30-C-95-001, Washington, DC.

  12. G. H. Hyatt (1995)Agricultural Utilization of Urban and Industrial By-Products, ACS Special Publication No. 58.

  13. H. G. Greizerstein, J. A. Syracuse, and P. J. Kostyniak (1993)Polym. Degrad. Stab. 39, 251–259.

    Article  CAS  Google Scholar 

  14. J.-D. Gu, S. Coulter, D. Eberiel, S. P. McCarthy, and R.A. Goss (1993)J. Environ. Polym. Degrad. 1(4), 293–299.

    Article  CAS  Google Scholar 

  15. J.-D. Gu, D. T. Eberiel, S. P. McCarthy, and R. A. Gross (1993)J. Environ. Polym. Degrad. 1(2), 143–153.

    Article  CAS  Google Scholar 

  16. F. Lefebvre, C. David, and C. V. Wawen (1994)Polym. Degrad. Stab. 45, 347–353.

    Article  CAS  Google Scholar 

  17. M. Weiland and C. David (1994)Polym. Degrad. Stab. 45, 371–377.

    Article  CAS  Google Scholar 

  18. J. Mergaert, C. Anderson, A. Wouters and J. Swings (1994)J. Environ. Polym. Degrad. 2, 177–183.

    Article  CAS  Google Scholar 

  19. R. M. Gardner, C. M. Buchanan, R. Komarek, D. Dorschel, C. Boggs, and A. W. White (1994)J. Appl. Polym. Sci. 52, 1477–1488.

    Article  CAS  Google Scholar 

  20. J.-D. Gu, S. Yang, R. Welton, D. Eberiel, S. P. McCarthy, and R. A. Gross (1994)J. Environ. Polym. Degrad. 2(2) 129–135.

    Article  CAS  Google Scholar 

  21. A. C. Palmisano, D. A. Maruscik, C. J. Ritchie, B. S. Schwab, S. R. Harper, and R. A. Rapaport (1993)J. Microbiol. Methods 18, 99–112.

    Article  CAS  Google Scholar 

  22. E. Epstein and J. I. Epstein (1989)BioCycle 30(8), 50–53.

    CAS  Google Scholar 

  23. American Society for Testing and Materials (1988) inASTM Book of Standards, Vol. 8.01, pp. 326–334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Issued as NRCC No. 37620.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, M., Shaw, K., Cooney, D. et al. Degradable polymers: The role of the degradation environment. J Environ Polym Degr 5, 137–151 (1997). https://doi.org/10.1007/BF02763657

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02763657

Key words

Navigation