Skip to main content
Log in

Review of the kinetics of alkaline degradation of cellulose in view of its relevance for safety assessment of radioactive waste repositories

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

The degradation of cellulose (a substantial component of low- and intermediate-level radioactive waste) under alkaline conditions occurs via two main processes: a peeling-off reaction and a basecatalyzed cleavage of glycosidic bonds (hydrolysis). Both processes show pseudo-first-order kinetics. At ambient temperature, the peeling-off process is the dominant degradation mechanism, resulting in the formation of mainly isosaccharinic acid. The degradation depends strongly on the degree of polymerization (DP) and on the number of reducing end groups present in cellulose. Beyond pH 12.5, the OH- concentration has only a minor effect on the degradation rate. It was estimated that under repository conditions (alkaline environment, pH 13.3-12.5) about 10% of the cellulosic materials (average DP = 1000-2000) will degrade in the first stage (up to 105 years) by the peeling-off reaction and will cause an ingrowth of isosaccharinic acid in the interstitial cement pore water. In the second stage (105-106 years), alkaline hydrolysis will control the further degradation of the cellulose. The potential role of microorganisms in the degradation of cellulose under alkaline conditions could not be evaluated. Proper assessment of the effect of cellulose degradation on the mobilization of radionuclides basically requires knowing the concentration of isosaccharinic acid in the pore water. This concentration, however, depends on several factors such as the stability of ISA under alkaline conditions, sorption of ISA on cement, formation of sparingly soluble ISA-salts, etc. A discussion of all the relevant processes involved, however, is far beyond the scope of the presented overview.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NAGRA (1994)Endlager für schwach- und mittelaktive AbfÄlle (Endlager SMA). Bericht zur Langzeitsicherheit des Endlagers SMA am Standort Wellenberg (Gemeinde Wolfenschiessen, NW), NAGRA Technical Report NTB 94-06, NAGRA, Wettingen, Switzerland.

  2. U. Berner (1990)A Thermodynamic Description of the Evolution of Pore Water Chemistry and Uranium Speciation During the Degradation of Cement, PSI-Bericht 62, Paul Scherrer Institute, Villigen, Switzerland. (Also published as NAGRA Technical Report NTB 90-12, NAGRA, Wettingen, Switzerland)

  3. R. L. Whistler and J. N. BeMiller (1958)Adv. Carbohydr. Chem. Biochem. 13, 289–329.

    Google Scholar 

  4. M. J. Blears, G. Machell, and G. N. Richards (1957)Chem. Ind. Aug. 24, 1150-1151.

    Google Scholar 

  5. G. Machell and G. N. Richards (1960)J. Chem. Soc. A 2, 1932–1939.

    Article  Google Scholar 

  6. D. T. Sawyer (1964)Chem. Rev. 64, 633–643.

    Article  CAS  Google Scholar 

  7. A. D. Moreton (1993)Mater. Res. Soc. Symp. Proc. 294, 753–758.

    CAS  Google Scholar 

  8. B. F. Greenfield, G. F. Holtom, M. H. Hurdus, N. O’Kelly, N. J. Pilkington, A. Rosevaer, M. W. Spindler, and S. J. Williams (1995)Mater. Res. Soc. Symp. Proc. 353, 1151–1158.

    CAS  Google Scholar 

  9. M. H. Bradbury and F. A. Sarott (1995)Sorption Databases for the Cementitious Near-Field of a L/ILW Repository for Performance Assessment, PSI-Bericht 95-06, Paul Scherrer Institute, Villigen, Switzerland. (Also published as NAGRA Technical Report NTB 93-08, NAGRA, Wettingen, Switzerland.)

  10. K. Okamura (1991) in D. N.-S. Hon and N. Shiraishi (Eds.),Wood and Cellulosic Chemistry, Marcel Dekker, New York and Basel, pp. 89–112.

    Google Scholar 

  11. H. Krassig (1985) in J. F. Kennedy, G. O. Phillips, D. J. Wedlock, and P. A. Williams (Eds.),Cellulose and Its Derivatives: Chemistry, Biochemistry and Applications, Marcel Dekker, New York, Chichester, Brisbane, pp. 3–25.

    Google Scholar 

  12. D. W. Haas, B. F. Hrutfiord, and K. V. Sarkanen (1967)J. Appl. Polym. Sci. 11, 587–600.

    Article  CAS  Google Scholar 

  13. M. Lewin (1985) in J. F. Kennedy, G. O. Phillips, D. J. Wedlock, and P. A. Williams (Eds.),Cellulose and Its Derivatives: Chemistry, Biochemistry and Applications, Marcel Dekker, New York, Chichester, Brisbane, pp. 27–35.

    Google Scholar 

  14. F. Neall (1994)Modelling of the Near-Field Chemistry of the SMA Repository at the Wellenberg Site, PSI-Bericht 94-18, Paul Scherrer Institute, Villigen, Switzerland.

    Google Scholar 

  15. E. Sjöström (1977)TAPPI 60, 151–154.

    Google Scholar 

  16. Y. Z. Lai (1991) in D. N.-S. Hon and N. Shiraishi (Eds.),Wood and Cellulosic Chemistry, Marcel Dekker, New York and Basel, pp. 455–523.

    Google Scholar 

  17. A. R. Procter and R. H. Wiekenkamp (1969)Carbohydr. Res. 10, 459–462.

    Article  CAS  Google Scholar 

  18. A. R. Procter and H. M. Apelt (1969)TAPPI 52, 1518–1522.

    CAS  Google Scholar 

  19. J. R. G. Bryce (1980) in J. P. Casey (Ed.),Pulp and Paper, Chemistry and Chemical Technology, Vol. 1, 3rd ed., John Wiley & Sons, New York, pp. 429–436.

    Google Scholar 

  20. V. L. Chiang and K. V. Sarkanen (1984)J. Wood Chem. Technol. 4, 1–18.

    Article  CAS  Google Scholar 

  21. J. C. Miller and J. N. Miller (1988)Statistics for Analytical Chemistry, Ellis Horwood, Chichester.

    Google Scholar 

  22. Y. Z. Lai and K. V. Sarkanen (1969)J. Polym. Sci.C 28, 15–26.

    Google Scholar 

  23. R. A. Young, K. V. Sarkanen, P. G. Johnson, and G. G. Allan (1972)Carbohydr. Res. 21, 111–122.

    Article  Google Scholar 

  24. G. Machell and G. N. Richards (1958)TAPPI 41, 12–16.

    CAS  Google Scholar 

  25. Y. Z. Lai and D. E. Ontto (1979)J. Appl. Polym. Sci. 23, 3219–3225.

    Article  CAS  Google Scholar 

  26. T. Vuorinen and E. Sjöström (1982)Carbohydr. Res. 108, 23–29.

    Article  CAS  Google Scholar 

  27. R. L. Colbran and G. F. Davidson (1961)J. Textile Inst. 52, T73-T87.

    Article  CAS  Google Scholar 

  28. Y. Z. Lai and K. V. Sarkanen (1967)Cellulose Chem. Technol. 1, 517–527.

    CAS  Google Scholar 

  29. Y. Z. Lai (1981)The Eckman Days, Vol. 2. International Symposium on Wood and Pulping Chemistry, Stockholm, June 9-12, pp. 26–33.

  30. O. Franzon and O. Samuelson (1957)Svensk Papperstidning 23, 872–877.

    Google Scholar 

  31. Y. Z. Lai (1972)Carbohydr. Res. 24, 57–65.

    Article  CAS  Google Scholar 

  32. N. Morohoshi (1991) in D. N.-S. Hon and N. Shiraishi (Eds.),Wood and Cellulosic Chemistry, Marcel Dekker, New York and Basel, pp. 331–392.

    Google Scholar 

  33. D. A. I. Goring and T. E. Timell (1962)TAPPI 45, 454–460.

    CAS  Google Scholar 

  34. L. R. Van Loon and M. A. Glaus (1997) in preparation.

  35. M. H. Bradbury and L. R. Van Loon (1997)Cementitious Near-Field Sorption Databases for Performance Assessment of a L/ILW Repository in a Palfris Marl Host Rock, PSI-Bericht (in preparation), Paul Scherrer Institute, Villigen, Switzerland. (Also published as NAGRA Technical Report NTB 96-04, NAGRA, Wettingen, Switzerland.)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Loon, L.R., Glaus, M.A. Review of the kinetics of alkaline degradation of cellulose in view of its relevance for safety assessment of radioactive waste repositories. J Environ Polym Degr 5, 97–109 (1997). https://doi.org/10.1007/BF02763593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02763593

Key Words

Navigation