Skip to main content
Log in

Anthropogenic, ecological and genetic factors in extinction and conservation

  • Special Feature
  • Published:
Researches on Population Ecology

Abstract

Anthropogenic factors constitute the primary deterministic causes of species declines, endangerment and extinction: land development, overexploitation, species translocations and introductions, and pollution. The primary anthropogenic factors produce ecological and genetic effects contributing to extinction risk. Ecological factors include environmental stochasticity, random catastrophes, and metapopulation dynamics (local extinction and colonization) that are intensified by habitat destruction and fragmentation. Genetic factors include hybridization with nonadapted gene pools, and selective breeding and harvesting. In small populations stochastic factors are especially important, including the ecological factors of Allee effect, edge effects, and demographic stochasticity, and the genetic factors of inbreeding depression, loss of genetic variability, and fixation of new deleterious mutations. All factors affecting extinction risk are expressed, and can be evaluated, through their operation on population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allee, W. C., A. E. Emerson, O. Park, T. Park and K. P. Schmidt (1949)Principles of animal ecology. Saunders, Philadelphia.

    Google Scholar 

  • Andreassen, H. P., S. Halle and R. A. Ims (1996) Optimal width of movement corridors for root voles: not too narrow and not too wide.Journal of Applied Ecology 33: 63–70.

    Google Scholar 

  • Andrewartha, H. G. and L. C. Birch (1954)The distribution and abundance of animals. University of Chicago Press, Chicago.

    Google Scholar 

  • Allendorf, F. W. and R. S. Waples (1996) Conservation and genetics of salmonid fishes, pp. 238–280. In J. C. Avise and J. L. Hamrick (eds.)Conservation genetics: case histories from nature. Chapman and Hall, New York.

    Google Scholar 

  • Arnold, S. J. (1995) Monitoring quantitative genetic variation and evolution in captive populations. pp. 295–317. In J. Ballou, M. Gilpin and T. J. Foose (eds.)Population management for survival and recovery: analytical methods and strategies in small populations. Columbia University Press, New York.

    Google Scholar 

  • Atkinson, I. (1989) Introduced animals and extinctions. pp. 59–75. In D. Western and M. Pearl (eds.)Conservation for the twenty-first century. Oxford University Press, Oxford.

    Google Scholar 

  • Beddington, J. R. and R. M. May (1977) Harvesting populations in a randomly fluctuating environment.Science 197: 463–465.

    PubMed  Google Scholar 

  • Brown, J. H. and A. Kodric-Brown (1977) Turnover rates in insular biogeography: effect of immigration on extinction.Ecology 58: 445–449.

    Google Scholar 

  • Burkey, T. V. (1989) Extinction in nature reserves: the effect of fragmentation and the importance of migration between reserve fragments.Oikos 55: 75–81.

    Google Scholar 

  • Burkey, T. V.(1995) Extinction rates in archipelagoes: implications for populations in fragmented habitats.Conservation Biology 9: 527–541.

    Google Scholar 

  • Bürger, R. and R. Lande (1994) On the distribution of the mean and variance of a quantitative trait under mutation-selection-drift balance.Genetics 138: 901–912.

    PubMed  Google Scholar 

  • Bürger, R. and M. Lynch (1995) Evolution and extinction in a changing environment: a quantitative-genetic analysis.Evolution 49: 151–163.

    Google Scholar 

  • Caughley, G. (1994) Directions in conservation biology.Journal of Animal Ecology 63: 215–244.

    Google Scholar 

  • Caughley, G. and A. Gunn (1996)Conservation biology in theory and practice. Blackwell Science, London.

    Google Scholar 

  • Charlesworth, D. and B. Charlesworth (1987) Inbreeding depression and its evolutionary consequences.Annual Review of Ecology and Systematics 18: 237–268.

    Google Scholar 

  • Clark, C. W. (1973) The economics of overexploitation.Science 181: 630–634.

    PubMed  Google Scholar 

  • Clark, C. W. (1990)Mathematical bioeconomics, 2nd edn. Wiley, New York.

    Google Scholar 

  • Coope, G. R. (1979) Late Cenozoic fossil Coleoptera: evolution, biogeography, and ecology.Annual Review of Ecology and Systematics 10: 247–267.

    Google Scholar 

  • Crow, J. F. and M. Kimura (1970)Introduction to population genetics theory. Harper and Row, New York.

    Google Scholar 

  • DeMauro, M. M. (1993) Relationship of breeding system to rarity in the Lakeside Daisy(Hymenoxys acaulis var. glabra).Conservation Biology 7: 542–550.

    Google Scholar 

  • Doak, D. (1989) Spotted owls and old growth logging in the Pacific Northwest.Conservation Biology 3: 389–396.

    Google Scholar 

  • Dobson, A. P. and R. M. May (1986) Disease and conservation. pp. 345–365.In M. Soulé (ed.)Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland.

    Google Scholar 

  • Dobzhansky, Th. (1970)Genetics of the evolutionary process. Columbia University Press, New York.

    Google Scholar 

  • Endler, J. (1977)Geographic variation, speciation, and cines. Princeton University Press, Princeton.

    Google Scholar 

  • Falconer, D. S. and T. F. C. Mackay (1996)Introduction to quantitative genetics, 4th edn. Longman, London.

    Google Scholar 

  • Frankham, R. (1995a) Inbreeding and extinction: a threshold effect.Conservation Biology 9: 792–799.

    Google Scholar 

  • Frankham, R. (1995b) Effective population size/adult population size ratios in wildlife: a review.Genetical Research 66: 95–107.

    Google Scholar 

  • Franklin, I. R. (1980) Evolutionary change in small populations, pp. 135–149.In M. Soulé and B. A. Wilcox (eds.)Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, Sunderland.

    Google Scholar 

  • Gilpin, M. E. and M. E. Soulé (1986) Minimum viable populations: processes of species extinction, pp. 19–34.In M. E. Soulé (ed.)Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland.

    Google Scholar 

  • Gomulkiewicz, R. and R. D. Holt (1995) When does evolution by natural selection prevent extinction?Evolution 49: 201–207.

    Google Scholar 

  • Grant, P. R. and T. D. Price (1981) Population variation in continuously varying traits as an ecological genetics problem.American Zoologist 21: 795–811.

    Google Scholar 

  • Groombridge, B. (ed.) (1992)Global biodiversity: status of the earth’s living resources. Chapman and Hall, London.

    Google Scholar 

  • Hanski, I. and M. E. Gilpin (eds.) (1997)Metapopulation biology. Academic Press, London.

    Google Scholar 

  • Hanski, I. and M. Gyllenberg (1993) Two general metapopulation models and the core-satellite species hypothesis.American Naturalist 142: 17–41.

    Google Scholar 

  • Hanski, I., J. Poyry, T. Pakkala and M. Kuussaari (1995) Multiple equilibria in metapopulation dynamics.Nature 377: 618–621.

    CAS  Google Scholar 

  • Hedrick, P. W. (1995) Gene flow and genetic restoration: the Florida panther as a case study.Conservation Biology 9: 996–1007.

    Google Scholar 

  • Hedrick, P. W. (1996) Bottleneck(s) or metapopulation in cheetahs.Conservation Biology 10: 897–899.

    Google Scholar 

  • Hess, G. (1996) Disease in metapopulation models: implications for conservation.Ecology 77: 1617–1632.

    Google Scholar 

  • Hoelzel, A. R., J. Halley, S. J. O’Brien, C. Campagna, T. Arnbom, B. LeBoeuf, K. Rails and G. A. Dover (1993) Elephant seal genetic variation and the use of simulation models to investigate historical population bottlenecks.Journal of Heredity 84: 443–449.

    PubMed  CAS  Google Scholar 

  • Jiménez, J. A., K. A. Hughes, G. Alaks, L. Graham and R. C. Lacy (1994) An experimental study of inbreeding depression in a natural habitat.Science 266: 271–273.

    PubMed  Google Scholar 

  • Keightley, P. D. (1994) The distribution of mutation effects on viability inDrosophila melanogaster.Genetics 138: 1315–1322.

    PubMed  CAS  Google Scholar 

  • Keller, L. F., P. Arcese, J. N. M. Smith, W. M. Hochachka and S. C. Stearns (1994) Selection against inbred song sparrows during a natural population bottleneck.Nature 372: 356–357.

    PubMed  CAS  Google Scholar 

  • Kierstead, H. and L. B. Slobodkin (1953) The sizes of water masses containing plankton bloom.Journal of Marine Research 12: 141–147.

    Google Scholar 

  • Lacy, R. C., A. Petric and M. Warneke. (1993) Inbreeding and out-breeding in captive populations of wild animal species, pp. 352–374.In N. W. Thornhill (ed.)The natural history of inbreeding and outbreeding: theoretical and empirical perspectives. University of Chicago Press, Chicago.

    Google Scholar 

  • Lande, R. (1987) Extinction thresholds in demographic models of territorial populations.American Naturalist 130: 624–635.

    Google Scholar 

  • Lande, R. (1988a) Demographic models of the northern spotted owl(Strix occidentalis caurina).Oecologia 75: 601–607.

    Google Scholar 

  • Lande, R. (1988b) Genetics and demography in biological conservation.Science 241: 1455–1460.

    PubMed  CAS  Google Scholar 

  • Lande, R. (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes.American Naturalist 142: 911–927.

    Google Scholar 

  • Lande, R. (1994) Risk of population extinction from fixation of new deleterious mutations.Evolution 48: 1460–1469.

    Google Scholar 

  • Lande, R. (1995) Mutation and conservation.Conservation Biology 9:782–791.

    Google Scholar 

  • Lande, R. (1998) Demographic stochasticity and Allee effect on a scale with isotropic noise.Oikos 83: 353–358.

    Google Scholar 

  • Lande, R. and G. F. Barrowclough (1987) Effective population size, genetic variation, and their use in population management. pp. 87–123.In M. Soulé (ed.)Viable populations for conservation. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lande, R., S. Engen and B. E. Sæther (1994) Optimal harvesting, economic discounting, and extinction risk in fluctuating populations.Nature 372: 88–90.

    CAS  Google Scholar 

  • Lande, R., S. Engen and B. -E. Sæther (1995) Optimal harvesting of fluctuating populations with a risk of extinction.American Naturalist 145: 728–745.

    Google Scholar 

  • Lande, R., S. Engen and B. -E. Ssether (1998) Extinction times in finite metapopulation models with stochastic local dynamics.Oikos 83: 383–389.

    Google Scholar 

  • Lande, R. and D. W. Schemske (1984) The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models.Evolution 39: 24–40.

    Google Scholar 

  • Lande, R., D. W. Schemske and S. T. Schultz (1994) High inbreeding depression, selective interference among loci, and the threshold selfing rate for purging recessive lethal mutations.Evolution 48: 965–978.

    Google Scholar 

  • Lande, R. and S. Shannon (1996) The role of genetic variability in adaptation and population persistence in a changing environment.Evolution 50: 434–437.

    Google Scholar 

  • Lande, R., B. -E. Sæther and S. Engen (1997) Threshold harvesting for sustainability of fluctuating resources.Ecology 78: 1341–1350.

    Google Scholar 

  • Levin, D. A., J. Francisco-Ortega and R. K. Jansen (1996) Hybridization and the extinction of rare plant species.Conservation Biology 10: 10–16.

    Google Scholar 

  • Levins, R. (1970) Extinction. pp. 77–107.In M. Gerstenhaber (ed.)Some mathematical problems in biology. American Mathematical Society, Providence.

    Google Scholar 

  • Lewontin, R. C. and L. C. Birch (1966) Hybridization as a source of variation for adaptation to new environments.Evolution 20: 315–336.

    Google Scholar 

  • Lopez, M. A. and C. Lopez-Fanjul (1993a) Spontaneous mutation for a quantitative trait in Drosophila melanogaster. I. Response to artificial selection.Genetical Research 61: 107–116.

    PubMed  CAS  Google Scholar 

  • Lopez, M. A. and C. Lopez-Fanjul (1993b) Spontaneous mutation for a quantitative trait inDrosophila melanogaster. II. Distribution of mutant effects on the trait and fitness.Genetical Research 61: 117–126.

    PubMed  CAS  Google Scholar 

  • Lovejoy, T. E., R. O. Bierregaard, Jr., A.B. Rylands, J. R. Malcolm, C. E. Quintela, L. H. Harper, K. S. Brown, Jr., A. H. Powell, G. V. N. Powell, H. O. R. Schubart and M. B. Hays (1986) Edge and other effects of isolation on Amazon forest fragments, pp. 257–285.In M. Soulé(ed.)Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland.

    Google Scholar 

  • Ludwig, D., R. Hilborn and C. Walters (1993) Uncertainty, resource exploitation, and conservation: lessons from history.Science 260: 17, 36.

    Google Scholar 

  • Lynch, M., J. Conery and R. Burger (1995a) Mutational meltdown in sexual populations.Evolution 49: 1067–1080.

    Google Scholar 

  • Lynch, M., J. Conery and R. Bürger (1995b) Mutation accumulation and the extinction of small populations.American Naturalist 146: 489–518.

    Google Scholar 

  • Lynch, M. and R. Lande (1993) Evolution and extinction in response to environmental change. pp. 234–250.In P. Karieva, R. Huey and J. Kingsolver (eds.)Biotic interactions and global change. Sinauer Associates, Sunderland.

    Google Scholar 

  • MacArthur, R. H. and E. O. Wilson (1967)The theory of island biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Mackay, T. F. C., R. F. Lyman and M. S. Jackson (1992) Effects ofP element insertion on quantitative traits inDrosophila melanogaster.Genetics 130: 315–332.

    PubMed  CAS  Google Scholar 

  • Malakoff, D. (1997) Extinction on the high seas.Science 277: 486–488.

    CAS  Google Scholar 

  • Maruyama, T. and M. Kimura (1980) Genetic variation and effective population size when local extinction and recolonization of subpopulations are frequent.Proceedings of the National Academy of Science of the USA 77: 6710–6714.

    Google Scholar 

  • May, R. M. (1976) Harvesting whale and fish populations.Nature 263: 91–92.

    Google Scholar 

  • May, R. M., J. R. Beddington, J. W. Horwood, and J. G. Shepherd (1978) Exploiting natural populations in an uncertain world.Mathematical Biosciences 42: 219–252.

    Google Scholar 

  • McKelvey, K., B. R. Noon and R. H. Lamberson (1993) Conservation planning for species occupying fragmented landscapes: the case of the northern spotted owl. pp. 424–450.In P. Karieva, R. Huey and J. Kingsolver (eds.)Biotic interactions and global change. Sinauer Associates, Sunderland.

    Google Scholar 

  • Miller, G. T., Jr. (1990)Living in the environment, 6th edn. Wadsworth, Belmont.

    Google Scholar 

  • Myers, R. A., J. Bridson and N. J. Barrowman (1995) Summary of worldwide spawner and recruitment data.Canadian Technical Report of Fisheries and Aquatic Sciences 2024.

  • Nehlsen, W., J.E. Williams and J. A. Lichatowich (1991) Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho and Washington.Fisheries 16: 4–21.

    Google Scholar 

  • ODEC (1991)The state of the environment. Organization for Economic Co-operation and Development, Paris.

    Google Scholar 

  • Okubo, A. (1980)Diffusion and ecological problems: mathematical models. Springer-Verlag, Berlin.

    Google Scholar 

  • Pease, C. M., R. Lande and J. J. Bull (1989) A model of population growth, dispersal and evolution in a changing environment.Ecology 70: 1657–1664.

    Google Scholar 

  • Peters, R. L. and T. E. Lovejoy (1992)Global warming and biological diversity. Yale University Press, New Haven and London.

    Google Scholar 

  • Pimm, S. L. (1991)The balance of nature? University of Chicago Press, Chicago.

    Google Scholar 

  • Rails, K. and J. D. Ballou (1983) Extinction: lessons from zoos. pp. 164–184.In C.M. Schonewald-Cox, S. M. Chambers, B. MacBryde and W. L. Thomas (eds.)Genetics and conservation: a reference for managing wild animal and plant populations. Benjamin/Cummings, Menlo Park.

    Google Scholar 

  • Ratner, S., R. Lande and B. B. Roper (1997) Population viability analysis of spring chinook salmon in the South Umpqua river, Oregon.Conservation Biology 11: 879–889.

    Google Scholar 

  • Robinson, S. K., F. R. Thompson III, T. M. Donovan, D. R. Whitehead and J. Faaborg (1995) Regional forest fragmentation and the nesting success of migratory birds.Science 267: 1987–1990.

    PubMed  CAS  Google Scholar 

  • Roush, R. T. and J. A. McKenzie (1987) Ecological genetics of insecticide and acaricide resistance.Annual Review of Entomology 32: 361–380.

    PubMed  CAS  Google Scholar 

  • Redford, K. H. (1992) The empty forest.BioScience 42: 412–422.

    Google Scholar 

  • Richter-Dyn, N. and N. S. Goel (1972) On the extinction of a colonizing species.Theoretical Population Biology 3: 406–433.

    PubMed  CAS  Google Scholar 

  • Rosenberg, A.A., M. J. Fogarty, M. P. Sissenwine, J. R. Beddington and J. G. Shepherd (1993) Achieving sustainable use of renewable resources.Science 262: 828–829.

    PubMed  Google Scholar 

  • Seehausen, O., J. van Alphen and F. Witte (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection.Science 277: 1808–1811.

    CAS  Google Scholar 

  • Simmons, M. J. and J. F. Crow (1977) Mutations affecting fitness inDrosophila populations.Annual Review of Genetics 11: 49–78.

    PubMed  CAS  Google Scholar 

  • Smith, F. A., J. L. Betancourt and J. H. Brown (1995) Evolution of body size in the woodrat over the past 25,000 years of climate change.Science 270: 2012–2014.

    CAS  Google Scholar 

  • Soulé, M. (1980) Thresholds for survival: maintaining fitness and evolutionary potential, pp. 151–169.In M. Soulé and B. A. Wilcox (eds.)Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, Sunderland.

    Google Scholar 

  • Stokes, T.K., J. M. McGlade and R. Law (eds.) (1993)The exploitation of evolving resources. Lecture Notes in Biomathematics, vol. 99. Springer-Verlag, Berlin.

    Google Scholar 

  • Thomas, J. W., E. D. Forsman, J. B. Lint, E. C. Meslow, B. R. Noon and J. Verner (1990)A conservation strategy for the northern spotted owl. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Vitousek, P. M. (1988) Diversity and biological invasions of oceanic islands, pp. 181–189.In E. O. Wilson (ed.)Biodiversity. National Academy Press, Washington, DC.

    Google Scholar 

  • Wayne, R. K. (1996) Conservation genetics in the Canidae. pp. 75–118.In J. C. Avise and J. L. Hamrick (eds.)Conservation genetics: case histories from nature. Chapman and Hall, New York.

    Google Scholar 

  • Wright, S. (1940) Breeding structure of populations in relation to speciation.American Naturalist 74: 232–248.

    Google Scholar 

  • Wright, S. (1969)Genetics and the evolution of populations. Vol. 2. The theory of gene frequencies. University of Chicago Press, Chicago.

    Google Scholar 

  • Young, T. P. (1994) Natural die-offs of large mammals: implications for conservation.Conservation Biology 8: 410–418.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell Lande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lande, R. Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol 40, 259–269 (1998). https://doi.org/10.1007/BF02763457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02763457

Key words

Navigation