Skip to main content
Log in

Dielectric resonator as a possible standard for characterization of high temperature superconducting films for microwave applications

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The performance of several designs of dielectric resonators used for microwave characterization of FITS films has been analyzed from the point of view of accuracy, sensitivity, and range. Designs discussed include Hakki-Coieman shielded types as well as open-ended resonators with sapphire, rutile and (ZrSn)TiO3 dielectrics. The best dielectric resonators have proved to have an uncertainty in surface resistance measurements only twice the uncertainty in theQ-factor. high sensitivity, and ability to measure a wide range of surface resistances. Hence the dielectric resonator technique can be considered as a standard for measurements of surface resistance of HTS films for wireless and PCS communication systems applications provided that adequate measurement procedures of theQ 0-factor are followed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kun II Parc,Personal and Wireless Communications Digital Technology and Standards (Kluwer Academic, Dordrecht, 1996).

    Google Scholar 

  2. J. Rowell.Proc. 10th Anniv. HTS Workshop (World Scientific, Singapore. 1996).

    Google Scholar 

  3. H. Pielet ai Physica C 153, 1604 (1988).

    Article  ADS  Google Scholar 

  4. S. Sridhar and W. L. Kennedy,Rev. Sci. Instrum. 49, 531 (1988).

    Article  ADS  Google Scholar 

  5. J. P. Carini et al.,Phys. Rev. B 37. 9726 (1988).

    Article  ADS  Google Scholar 

  6. R. E. Glover and M. Tinkham,Phys. Rev. 108, 243 (1957).

    Article  ADS  Google Scholar 

  7. C. S. Nichols et al.,Phys. Rev. B 38. 7029 (1988).

    Article  Google Scholar 

  8. P. H. Kobrin et al.,Physica C 176, 121 (1991).

    Article  ADS  Google Scholar 

  9. J. Ceremuga-Mazierska,Supercond. Sci. Technol. 5, 371 (1992).

    Article  ADS  Google Scholar 

  10. J. Ceremuga et al.,J. Supercond. 8, 681 (1995).

    Article  Google Scholar 

  11. J. S. Martens et al.,IEEE Trans. Magn. MAG-25, 984 (1989).

    Article  Google Scholar 

  12. T. Harrington, J. Wosik, and S. Lang, to be published inIEEE Trans. Appl. Supercond.

  13. A. Valenzuela and P. Russer,Appl. Phys. Lett. 55, 1029 (1989).

    Article  ADS  Google Scholar 

  14. D. E. Oates. A. C. Anderson, and P. M. Mankiewich.J. Supercond. 3. 251 (1990).

    Article  Google Scholar 

  15. D. Kalokitis et al.,J. Electron. Mater. 19, 117 (1990).

    Article  Google Scholar 

  16. R. C. Taber.Rev. Sci. Instrum. 61. 2200 (1990).

    Article  ADS  Google Scholar 

  17. Xiang Ma, PhD Thesis, Stanford University, 1995.

  18. T. Takken, Stanford University, private communication.

  19. K. Geher,Tolerance and Sensitivity of Electronic Circuits (PWNT, Warsaw 1978).

    Google Scholar 

  20. R. Woode, M. Tobar, and E. Ivanov,IEEE Trans. UFFC,43, 936 (1996).

    Google Scholar 

  21. Y. Kobayashi and M. Katoh.IEEE Trans. MTT 33, 586 (1985).

    Article  Google Scholar 

  22. Xu Deming and Li Zhaonian.Proc. 15th Europ. Microw. Conf,912 (1985)7

    Google Scholar 

  23. J. Krupka,Proc. 5th Int. Conf. Dielectric Materials and Appl., 322(1980).

  24. J. Fiedziuszko and P. Heidmann.IEEE MTT-S Digest. 555 (1989).

  25. J-C. Mage and D. Dieumegard.AGARD Conf. 10–1 (1990).

  26. Y. Kobayashi, T. Imai, and H. Kayano,IEEE MTT-S Digest. 281 (1990).

  27. O. Llopis and J. Graifeuil,J. Less-Common Met. 164. 1248 (1990).

    Article  Google Scholar 

  28. N. Klein et al.,J. Supercond. 5, 195 (1992).

    Article  ADS  Google Scholar 

  29. Z-Y. Shen et al.,IEEE Trans. MTT 40, 2424 (1992).

    Article  Google Scholar 

  30. J. Krupka et al.,IEEE Trans. Appl. Supercond. 3, 3043 (1993).

    Article  Google Scholar 

  31. C. D. Langham and J. C. Gallop,IEEE Trans. Meas. Instrum. 42 96(1993).

    Article  Google Scholar 

  32. R. Flether and J. Cook.Rev. Sci. Instrum. 65, 2658 (1994).

    Article  ADS  Google Scholar 

  33. N. Tellmann et al.,IEEE Trans. Appl. Supercond. 4. 143 (1994).

    Article  Google Scholar 

  34. A. Mourachkine and A. Barel,IEEE Trans. MTT 43, 544 (1995).

    Article  Google Scholar 

  35. W. Dieteet al., Europ. Conf. on Appl. Superconduct., Edinburgh (1995).

  36. J. Ceremuga, K. Leong. and R. Grabovickic,Proc. MIKON ’96, Warsaw, 305 (1996).

  37. R. Geyer, NIST Boulder, private communication.

  38. J. Wosik et al.,Proc. 10th Annw. HTS Workshop, 12 (World Scientific, Singapore, 1996).

    Google Scholar 

  39. B. Marcilhac, Thomson LCR, Corbeville, private communication.

  40. B. W. Hakki and P. D. Coieman.IEEE Trans. MTT 8. 402 (1960).

    Article  Google Scholar 

  41. S. B. Cohn,IEEE Trans. MTT 16. 218 (1968).

    Article  Google Scholar 

  42. W. E. Courtney,IEEE Trans. MTT 18, 476 (1970).

    Article  Google Scholar 

  43. D. Kajfez and P. Guillon,Dielectric Resonators (Vector Fields, 1990).

  44. J. Krupka, SUP 13 software.

  45. B. Marcilhac. private communication.

  46. J. Ceremuga and J. Krupka,SPIE Proc. 2697, 177 (1996).

    Google Scholar 

  47. C. Huang and J. Ceremuga, private communication.

  48. E. L. Ginzton,Microwave Measurements (McGraw-Hill, New-York, 1957).

    Google Scholar 

  49. D. Kajfez,IEEE Trans. MTT 42. 1149 (1994).

    Article  Google Scholar 

  50. Kenneth Leong, PhD Thesis, James Cook University, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazierska, J. Dielectric resonator as a possible standard for characterization of high temperature superconducting films for microwave applications. J Supercond 10, 73–84 (1997). https://doi.org/10.1007/BF02763176

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02763176

Key Words

Navigation