Skip to main content
Log in

Simultaneous equivariant estimation of the parameters of matrix scale and matrix location-scale models

  • Articles
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Eaton and Olkin (1987) discussed the problem of best equivariant estimator of the matrix scale parameter with respect to different scalar loss functions. Edwin Prabakaran and Chandrasekar (1994) developed simultaneous equivariant estimation approach and illustrated the method with examples. The problems considered in this paper are simultaneous equivariant estimation of the parameters of (i) a matrix scale model and (ii) a multivariate location-scale model. By considering matrix loss function (Klebanov, Linnik and Ruhin, 1971) a characterization of matrix minimum risk equivariant (MMRE) estimator of the matrix parameter is obtained in each case. Illustrative examples are provided in which MMRE estimators are obtained with respect to two matrix loss functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu, D. (1969). On sufficiency and invariance. InEssays in Probability and Statistics. Ed. Bose, University of North Carolina Press, Chapel Hill.

    Google Scholar 

  • Berk, R. (1972). A note on sufficiency and invariance.Ann. Math. Statist. 43, 647–650.

    MathSciNet  MATH  Google Scholar 

  • Buldygin, V.V. (1977). On invariance of Bayes estimates for generalized random variables.Theory Prob. Appl. 22, 172–175.

    Article  MATH  MathSciNet  Google Scholar 

  • Chandrasekar, B., Leo Alexander, T. and Balakrishnan, N. (2002). Equivariant estimation for the parameters of an exponential model based on Type II progressive censored sampling.Commun. Statist.—Theor. Meth. 31, 1675–1686.

    Article  MATH  Google Scholar 

  • Chung, Y. and Kim, C. (1997). Simultaneous estimation of the multivariate normal mean under balanced loss function.Commun. Statist-Theor. Meth. 26(7), 1599–1611.

    Article  MATH  MathSciNet  Google Scholar 

  • Dey, D.K., (1989). On estimation of the scale matrix of the multivariate F distribution.Commun. Statist.—Theor. Meth. 18, 1373–1383

    Article  MATH  MathSciNet  Google Scholar 

  • Dey, D.K., Ghosh, M. and Srinivasan, C. (1987). Simultaneous estimation of parameters under entropy loss.J. Statist. Planning Infer. 15, 347–363.

    Article  MATH  MathSciNet  Google Scholar 

  • Eaton, M.L. and Olkin, I. (1987). Best equivariant estimator of a Cholesky ecomposition.Ann. Statist. 15, 1639–1650.

    MATH  MathSciNet  Google Scholar 

  • Eberl, W. Jr. (1983). Invariantly sufficient equivariant statistics and characterizations of normality in translation classes.Ann. Statist. 11, 330–336.

    MATH  MathSciNet  Google Scholar 

  • Edwin Prabakaran, T. (1995).Contributions to theory of simultaneous equivariant estimation, Ph.D. Thesis, University of Madras, India.

    Google Scholar 

  • Edwin Prabakaran, T. and Chandrasekar, B. (1994). Simultaneous equivariant estimation for location-scale models.J. Statist. Planning Infer. 40, 51–59.

    Article  MATH  Google Scholar 

  • Hall, W.J., Wijsman, R.A. and Ghosh, J.K. (1965). The relationship between sufficiency and invariance with applications in sequential analysis.Ann. Math. Statist. 36, 575–614.

    MathSciNet  MATH  Google Scholar 

  • Hooper, P.M. (1982). Sufficiency and invariance in confidence set estimation.Ann. Statist. 10, 549–555.

    MATH  MathSciNet  Google Scholar 

  • James, W and Stein, C. (1960). Estimation with quadratic loss.Proc. Fourth Berkeley Symp. Math. Statist. Probab. 1, 361–379, Univ. California Press.

  • Jin, C. and Berry, J.C. (1993). Equivariant estimation of a normal mean vector using a normal concomitant vector for covariance adjustment.Commun. Statist.—Theor. Meth. 22, 335–346.

    Article  MATH  MathSciNet  Google Scholar 

  • Klebanov, L.B., Linnik Ju V. and Ruhin, A.L. (1971). Unbiased estimation and matrix loss functions,Soviet. Math. Dok. 12, 1526–1528.

    MATH  Google Scholar 

  • Landers, D. and Rogge, L. (1973). On sufficiency and invariance.Ann. Statist. 1, 543–544.

    MATH  MathSciNet  Google Scholar 

  • Lehmann, E.L. (1983).Theory of Point Estimation, John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Lehmann, E.L. and Casella, G. (1998).Theory of Point Estimation. Second edition, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Leo Alexander, T. and Chandrasekar, B. (1999a). Equivariant estimation for the parameters of an exponential model based on censored sampling.Biom. J. 41, 471–481.

    Article  MATH  MathSciNet  Google Scholar 

  • Leo Alexander, T. and Chandrasekar, B. (1999b). Characterization of an optimal matrix estimator under convex loss function.Statist. Papers 40, 377–391.

    Article  MATH  MathSciNet  Google Scholar 

  • Leo Alexander, T. and Chandrasekar, B. (2003). Simultaneous equivariante stimation of the parameters of uniform models based on progressive Type II right censored sample.Statistical Methods and Practice Edited by Balakrishnan, N et al., 81–99, Narosa Publishing House, Chennai (INDIA)

    Google Scholar 

  • Oktaba, W., Kornacki, A. and Wawrzosek, J. (1998). Invariant linearly sufficient transformations of the general Gauss—Markov model. Estimating and Testing.Scand. J. Statist. 15, 117–124.

    MathSciNet  Google Scholar 

  • Olkin, I. (1985). Estimating a Cholesky decomposition.Linear Algebra Appl. 67, 201–205.

    Article  MATH  MathSciNet  Google Scholar 

  • Perron, F. and Giri, N. (1990). On the best equivariant estimator of mean of a multivariable normal population.J Multivariate Anal. 31, 1–16.

    Article  MathSciNet  Google Scholar 

  • Sharma, D. and Krishnamoorthy, K. (1983). Orthogonal equivariant minimax estimators of bivariate normal covariance matrix and precision matrix.Calcutta Statist. Ass. Bull. 32, 23–45.

    MATH  MathSciNet  Google Scholar 

  • Zacks, S. (1971).The Theory of Statistical Inference. John Wiley and Sons, New York.

    Google Scholar 

  • Zacks, S. (1981). Bayes equivariant estimators of the variance of a finite population for exponential priors.Commun. Statist.—Theor. Meth. A 10, 427–437.

    Article  MathSciNet  Google Scholar 

  • Zhang, S. and Sha, Q. (1997). On the best equivariant estimator of covariance matrix of a multivariate normal population. Commun. Statist.—Theor. Meth. 26(8), 2021–2034.

    Article  MATH  MathSciNet  Google Scholar 

  • Zacks, S. and Solomon, H. (1981). Bayes and equivariant estimators of the variance of a finite population: Part I, Simple random sampling. Commun. Statist.—Theor. Meth. A 10(5), 407–426.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leo Alexander, T., Chandrasekar, B. Simultaneous equivariant estimation of the parameters of matrix scale and matrix location-scale models. Statistical Papers 46, 483–507 (2005). https://doi.org/10.1007/BF02763001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02763001

Keywords and Phrases

Navigation