Skip to main content
Log in

Integrating onp-adic Lie groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Inspired by the classical Mahler measure of a polynomial, we study the integral of the order of an arithmetic polynomial on a compactp-adic Lie group. A result of Denef and van den Dries guarantees this is always a rational number. Integrals of this kind arise naturally; for example, the local canonical height of a rational point on an elliptic curve is given by a Mahler measure. Also, the mean valuation of the normal integral generators in a finite Galois extension arises as a Mahler measure. There is interest in being able to calculate the value of this measure. We show that for some classical groups, it is possible to reduce the integral to a simpler form, one where explicit computations are feasible. The motivation comes from the calculus trick of integration by substitution, also from Weyl’s criterion. Applications are given to Galois Module Theory. Also, a close encounter with Leopoldt’s conjecture is recorded. We deduce our results on the Mahler measure from the more general setting of local zeta functions defined forp-adic Lie groups. Our techniques apply to certain zeta functions, so we state and prove our results at that level of generality in our main theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borel and J. Tits,Groupes réductifs, Publications Mathématiques de l’Institut des Hautes Études Scientifiques27 (1965), 55–151.

    Article  MathSciNet  Google Scholar 

  2. D. Boyd,Speculations concerning the range of Mahler’s measure, Canadian Mathematical Bulletin24 (1980), 453–469.

    Google Scholar 

  3. C. Bushnell,Norm distribution in Galois orbits, Journal für die reine und angewandte Mathematik310 (1979), 81–99.

    MATH  MathSciNet  Google Scholar 

  4. C. Curtis and I. Riener,Representation Theory of Finite Groups and Associative Algebras, Wiley, New York, 1962.

    MATH  Google Scholar 

  5. J. Denef and L. van den Dries,p-adic and real subanalytic sets, Annals of Mathematics128 (1988), 79–138.

    Article  MathSciNet  Google Scholar 

  6. J. Denef and D. Meuser,A functional equation of Igusa’s local zeta function, American Journal of Mathematics113 (1991), 1135–1152.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Dixon, M. du Sautoy, A. Mann and D. Segal,Analytic pro-p Groups, London Mathematical Society Lecture Notes #157, Cambridge University Press, 1991.

  8. M. P. F. du Sautoy,Finitely generated groups, p-adic analytic groups and Poincaré series, Annals of Mathematics137 (1993), 639–670.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. P. F. du Sautoy,Zeta functions of groups and Lie algebras: uniformity, Israel Journal of Mathematics86 (1994), 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. P. F. du Sautoy,Counting congruence subgroups in arithmetic groups, The Bulletin of the London Mathematical Society26 (1994), 255–262.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. P. F. du Sautoy and A. Lubotzky,Functional equations and uniformity for local zeta functions of nilpotent groups, American Journal of Mathematics118 (1996), 39–90.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. R. Everest,On the p-adic integral of an exponential polynomial, The Bulletin of the London Mathematical Society27 (1995), 334–340.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. R. Everest,The mean value of a sum of S-units, Journal of the London Mathematical Society (2)51 (1995), 417–428.

    MATH  MathSciNet  Google Scholar 

  14. G. R. Everest and Bríd ní Fhlathúin,The elliptic Mahler measure, Mathematical Proceedings of the Cambridge Philosophical Society120 (1996), 13–25.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Faltings,Diophantine approximation on abelian varieties, Annals of Mathematics133 (1991), 549–576.

    Article  MathSciNet  Google Scholar 

  16. F. J. Grunewald, D. Segal and G. C. Smith,Subgroups of finite index in nilpotent groups, Inventiones Mathematicae93 (1988), 185–223.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Koblitz,p-adic Analysis: A Short Course on Recent Work, London Mathematical Society Lecture Notes #46, Cornell Univ. Press, Ithaca, NY, 1980.

    MATH  Google Scholar 

  18. H.-W. Leopoldt,Eine p-adische Theorie der Zetawerte II, Journal für die reine und angewandte Mathematik274/75 (1975), 224–239.

    Article  MathSciNet  Google Scholar 

  19. M. Matsumoto,Sur les sour-groupes arithmetiques des groupes semisimple déployés, Annales Scientifiques de l’Écolee Normale Supérieure2 (1969), 1–62.

    MATH  Google Scholar 

  20. A. J. van der Poorten,Zeroes of p-adic exponential polynomials, Indagationes Mathematicae38 (1976), 46–49.

    Google Scholar 

  21. W. M. Schmidt,Diophantine Approximations and Diophantine Equations, Lecture Notes in mathematics #1467, Springer, Berlin, 1991.

    MATH  Google Scholar 

  22. R. Steinberg,Lectures on Chevalley Groups, Yale University, 1967.

  23. M. J. Taylor,On Fröhlich’s conjecture for rings of integers of tame extensions, Inventiones Mathematicae63 (1981), 41–79.

    Article  MATH  MathSciNet  Google Scholar 

  24. B. A. F. Wehrfritz,Infinte Linear Groups, Springer, Berlin, Heidelberg, New York, 1973.

    Google Scholar 

  25. T. Weigel,On the profinite completion of arithmetic groups of split type, to appear.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. F. Du Sautoy.

Additional information

Thanks go to Steve Wilson, the SERC and the London Mathematical Society for the Durham Galois Modules Workshop, which inspired the results in §5. Thanks go to Alex Lubotzky and the Royal Society for making possible the visit of the second author to the Hebrew University in Jerusalem which lead to the zeta-function point of view in §1 and §2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du Sautoy, M.P.F., Everest, G.R. Integrating onp-adic Lie groups. Isr. J. Math. 103, 207–235 (1998). https://doi.org/10.1007/BF02762274

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02762274

Keywords

Navigation