Israel Journal of Mathematics

, Volume 92, Issue 1–3, pp 349–359

No random reals in countable support iterations

Article

Abstract

We prove a preservation theorem for limit steps of countable support iterations of proper forcing notions whose particular cases are preservations of the following properties on limit steps: “no random reals are added”, “μ(Random(V))≠1”, “no dominating reals are added”, “Cohen(V) is not comeager”. Consequently, countable support iterations of σ-centered forcing notions do not add random reals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Bartoszynski,Additivity of measure implies additivity of category, Transactions of the American Mathematical Society281 (1984), 209–213.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    T. Bartoszynski and H. Judah,Measure and Category, in preparation.Google Scholar
  3. [3]
    T. Bartoszynski and H. Judah,Jumping with random reals, Annals of Pure and Applied Logic48 (1990), 197–213.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Goldstern,Forcing tools for your forcing construction, inSet Theory of the Reals 1991 (H. Judah, ed.), Israel Mathematical Conference Proceeding6 (1993), 305–360.Google Scholar
  5. [5]
    T. Jech,Set Theory, Academic Press, New York, 1978.Google Scholar
  6. [6]
    A.W. Miller,Some properties of measure and category, Transactions of the American Mathematical Society266 (1981), 93–114.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J. Pawlikowski,Why Solovay real produces Cohen real, Journal of Symbolic Logic51 (1986), 957–968.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    J. Raisonnier and J. Stern,The strength of measurability hypothesis, Israel Journal of Mathematics50 (1985), 337–349.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    S. Shelah,Proper Forcing, Lecture Notes in Mathematics940, Spring-Verlag, Berlin, 1982.MATHGoogle Scholar
  10. [10]
    S. Shelah,Proper and Improper Forcing, to appear.Google Scholar
  11. [11]
    J. Stern,Generic extensions which do not add random reals, Proc. Caracas, Lecture Notes in Mathematics1130, Springer-Verlag, Berlin, 1983, pp. 395–407.Google Scholar

Copyright information

© Hebrew University 1995

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceBar Ilan UniversityRamat GanIsrael
  2. 2.Matematický ústav SAVKošiceSlovakia

Personalised recommendations