Abstract
The existence and non-existence of global solutions and theL p blow-up of non-global solutions to the initial value problemu′(t)=Δu(t)+u(t)γ onR n are studied. We consider onlyγ>1. In the casen(γ − 1)/2=1, we present a simple proof that there are no non-trivial global non-negative solutions. Ifn(γ−1)/2≦1, we show under mild technical restrictions that non-negativeL p solutions always blow-up inL p norm in finite time. In the casen(γ−1)/2>1, we give new sufficient conditions on the initial data which guarantee the existence of global solutions.
Similar content being viewed by others
References
D. G. Aronson and H. F. Weinberger,Multidimensional nonlinear diffusion arising in population genetics, Advances in Math.30 (1978), 33–76.
H. Fujita, On the blowing up of solutions of the Cauchy problem for u1 = ▽u +u 1+a, J. Fac. Sci. Univ. Tokyo, Sect. I13 (1966), 109–124.
H. Fujita,On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Proc. Symp. Pure Math., Vol. 18, Part I, Amer. Math. Soc., 1968, pp. 138–161.
A. Haraux and F. B. Weissler,Non-uniqueness for a semilinear initial value problem, preprint.
K. Hayakawa,On nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad.49 (1973), 503–505.
K. Kobayashi, T. Sino and H. Tanaka,On the growing up problem for semilinear heat equations, J. Math. Soc. Japan29 (1977), 407–424.
E. M. Stein,Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N. J., 1971.
F. B. Weissler,Semilinear evolution equations in Banach spaces, J. Functional Analysis32 (1979), 277–296.
F. B. Weissler,Local existence and nonexistence for semilinear parabolic equations in L p, Indiana Univ. Math. J.29 (1980), 79–102.
K. Yosida,Functional Analysis, Springer-Verlag, New York, 1971.
Author information
Authors and Affiliations
Additional information
Research partially supported by NSF grant MCS79-03636.
Rights and permissions
About this article
Cite this article
Weissler, F.B. Existence and non-existence of global solutions for a semilinear heat equation. Israel J. Math. 38, 29–40 (1981). https://doi.org/10.1007/BF02761845
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02761845