Skip to main content
Log in

Existence and non-existence of global solutions for a semilinear heat equation

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The existence and non-existence of global solutions and theL p blow-up of non-global solutions to the initial value problemu′(t)=Δu(t)+u(t)γ onR n are studied. We consider onlyγ>1. In the casen(γ − 1)/2=1, we present a simple proof that there are no non-trivial global non-negative solutions. Ifn(γ−1)/2≦1, we show under mild technical restrictions that non-negativeL p solutions always blow-up inL p norm in finite time. In the casen(γ−1)/2>1, we give new sufficient conditions on the initial data which guarantee the existence of global solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Aronson and H. F. Weinberger,Multidimensional nonlinear diffusion arising in population genetics, Advances in Math.30 (1978), 33–76.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Fujita, On the blowing up of solutions of the Cauchy problem for u1 = ▽u +u 1+a, J. Fac. Sci. Univ. Tokyo, Sect. I13 (1966), 109–124.

    MathSciNet  MATH  Google Scholar 

  3. H. Fujita,On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Proc. Symp. Pure Math., Vol. 18, Part I, Amer. Math. Soc., 1968, pp. 138–161.

    Google Scholar 

  4. A. Haraux and F. B. Weissler,Non-uniqueness for a semilinear initial value problem, preprint.

  5. K. Hayakawa,On nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad.49 (1973), 503–505.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Kobayashi, T. Sino and H. Tanaka,On the growing up problem for semilinear heat equations, J. Math. Soc. Japan29 (1977), 407–424.

    MATH  MathSciNet  Google Scholar 

  7. E. M. Stein,Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N. J., 1971.

    Google Scholar 

  8. F. B. Weissler,Semilinear evolution equations in Banach spaces, J. Functional Analysis32 (1979), 277–296.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. B. Weissler,Local existence and nonexistence for semilinear parabolic equations in L p, Indiana Univ. Math. J.29 (1980), 79–102.

    Article  MATH  MathSciNet  Google Scholar 

  10. K. Yosida,Functional Analysis, Springer-Verlag, New York, 1971.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by NSF grant MCS79-03636.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissler, F.B. Existence and non-existence of global solutions for a semilinear heat equation. Israel J. Math. 38, 29–40 (1981). https://doi.org/10.1007/BF02761845

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02761845

Keywords

Navigation