Skip to main content
Log in

Convergence of interpolating cardinal splines: Power growth

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Letf(x) be the restriction to the real axis of an entire function of exponential typeτ<π and of power growth on the axis. Then thenth order cardinal spline, nf(x), interpolatingf(x) at the integers converges uniformly on compacta tof(x). This is also true of the respective derivatives. An example shows that exponential typeπ is not necessarily permitted. The proof utilizes distribution theory and estimates on the derivatives of the Fourier transform of the fundamental splineL n(x).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richard R. Goldberg,Restrictions of Fourier transforms and extension of Fourier sequences, J. Approximation Theory3 (1970), 149–155.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. J. Newman,Some remarks on the convergence of cardinal splines, M. R. C. Report # 1474.

  3. M. J. Marsden, F. B. Richards, and S. D. Riemenschneider,Cardinal spline interpolation operators on l p data, Indiana Univ. Math. J.24 (1975), 677–689.

    Article  MathSciNet  MATH  Google Scholar 

  4. Franklin Richards,The Lebesgue constrants for cardinal spline interpolation, J. Approximation Theory14 (1975), 83–92.

    Article  MathSciNet  MATH  Google Scholar 

  5. Franklin Richards, and I. J. Schoenberg,Notes on spline functions IV. A cardinal spline analogue of the theorem of the brothers Markov, Israel J. Math.16 (1973), 94–102.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. J. Schoenberg,Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math.4 (1946): Part A, 45–99; Part B, 112–141.

    MathSciNet  Google Scholar 

  7. I. J. Schoenberg,Cardinal interpolation and spline functions, J. Approximation Theory2 (1969), 167–206.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. J. Schoenberg,Cardinal interpolation and spline functions II. Interpolation of the data of power growth, J. Approximation Theory6 (1972), 404–420.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. J. Schoenberg,Cardinal spline interpolation, inRegional Conference Series in Applied Math. 12, S.I.A.M. Philadelphia, 1973.

  10. I. J. Schoenberg,Notes on spline functions III. On the convergence of the interpolating cardinal splines as their degree tends to infinity, Israel J. Math.16 (1973), 87–93.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Treves,Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.

    MATH  Google Scholar 

  12. A. H. Zemanian,Distribution Theory and Transform Analysis, McGraw-Hill, New York, 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research is partially supported by Canadian National Research Council Grant A-7687.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riemenschneider, S.D. Convergence of interpolating cardinal splines: Power growth. Israel J. Math. 23, 339–346 (1976). https://doi.org/10.1007/BF02761812

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02761812

Keywords

Navigation