Skip to main content
Log in

6-hydroxydopamine lesion of rat nigrostriatal dopaminergic neurons differentially affects nicotinic acetylcholine receptor subunit mRNA expression

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Nicotinic acetylcholine receptor (nAChR) subunit mRNA expression in the rat substantia nigra (SN) was assayed by semiquantitative RT-PCR following 6-hydroxydopamine (6-OHDA) lesion of nigrostriatal dopaminergic neurons. Six months after unilateral injection of 6-OHDA or saline into the SN, total RNA was isolated from ipsilateral and contralateral tissue samples. RT-PCR amplifications were performed with template titration using primers specific for sequences encoding

  1. 1.

    nAChR α2–α7 and β2–β4 subunits

  2. 2.

    Glutamic acid decarboxylase

  3. 3.

    Glyceraldehyde 3-phosphate dehydrogenase for normalization of template mass.

PCR products specific for α3, α4, α5, α6, α7, β2, β3, and glutamic acid decarboxylase were detected in the reactions containing SN RNA. This is the first evidence that α7 may be expressed in the SN. α2 and β4 PCR products were not detected in SN reactions, although they were observed in hippocampus and thalamus control reactions. A comparison of ipsilateral and contralateral SN RT-PCR reaction products showed substantial decreases in α5, α6, and β3 product yields following 6-OHDA, but not sham treatment. Neither the SN of sham-lesioned rats nor the thalamus of 6-OHDA-lesioned rats yielded similar results, indicating that the effects observed in 6-OHDA-treated SN were not caused by local mechanical damage or a nonspecific response, respectively. Effects of 6-OHDA treatment on α3, α4, α7, β2, or glutamic acid decarboxylase product yields from SN samples were small or undetectable. The results suggest that α5, β6, and β3 subunit-encoding mRNAs are expressed at substantially higher levels in dopaminergic than in nondopaminergic cell bodies in the SN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckstead R. M., Domesick V. B., and Nauta W. J. H. (1979) Efferent connections of the ubstantia nigra and ventral tegmental area in the rat.Brain Res. 175, 191–217.

    Article  PubMed  CAS  Google Scholar 

  • Boulter J., O’Shea-Greenfield A., Duvoisin R. M., Connolly J. G., Wada E., Jensen A., et al. (1990) α3, α5, and β4: Three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster.J. Biol. Chem. 265, 4472–4482.

    PubMed  CAS  Google Scholar 

  • Clarke P. B. S. and Pert A. (1985) Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons.Brain Res. 117, 355–358.

    Article  Google Scholar 

  • Clarke P. B. S. and Reuben M. (1996) Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release.Br. J. Pharmacol. 117, 595–606.

    Google Scholar 

  • Clarke P. B. S., Schwartz R. D., Paul S. M., Pert C. B., and Pert A. (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-α-bungarotoxin.J. Neurosci. 5, 1307–1315.

    PubMed  CAS  Google Scholar 

  • Conroy W. G. and Berg D. K. (1995) Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions.J. Biol. Chem. 270, 4424–4431.

    Article  PubMed  CAS  Google Scholar 

  • Court J. A., Perry E. K., Spurden D., Lloyd S., Gillespie J. I., Whiting P., et al. (1994) Comparison of the binding of nicotinic agonists to receptors from human and rat cerebral cortex and from chick brain (α4β2) transfected into mouse fibroblasts with ion channel activity.Brain Res. 667, 118–122.

    Article  PubMed  CAS  Google Scholar 

  • Deneris E. S., Boulter J., Swanson L. W., Patrick J., and Heinemann S. (1989) β3: A new member of nicotinic acetylcholine receptor gene family is expressed in brain.J. Biol. Chem. 264, 6268–6272.

    PubMed  CAS  Google Scholar 

  • Dineley-Miller K. and Patrick J. (1992) Gene transcripts for the nicotinic acetylcholine receptor subunit, Beta4, are distributed in multiple areas of the rat central nervous system.Mol. Brain Res. 16, 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Dornan W. A., McCampbell A. R., Tinkler G. P., Hickman L. H., Bannon A. W., Decker M. W., et al. (1996) Comparison of site-specific injections into basal forebrain on water maze and radial arm maze performance in the male rat after immunolesioning with 192IgG saporin.Behav. Brain Res. 82, 93–101.

    Article  Google Scholar 

  • El-Bizri H. and Clarke P. B. S. (1994) Blockade of nicotinic receptor-mediated release of dopamine from striatal synaptosomes by chlorisondamine and other nicotinic antagonists administeredin vitro.Br. J. Pharmacol. 111, 406–413.

    PubMed  CAS  Google Scholar 

  • Elliott K. J., Ellis S. B., Berckhan K. J., Urrutia A., Chavez-Noriega L. E., Johnson E. C., et al. (1996) Comparative structure of human neuronal α2–α7 and β2–β4 nicotinic acetylcholine receptor subunits and functional expression of the α2, α3, α4, α7, β2 and β4 subunits.J. Mol. Neurosci. 7, 217–228.

    Article  Google Scholar 

  • Etienne P., Robitaille Y., Wood P., Gauthier S., Nair N. P. V., and Quirion R. (1986) Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s disease.Neuroscience 19, 1279–1291.

    Article  PubMed  CAS  Google Scholar 

  • Forsayeth J. R. and Kobrin E. (1997) Formation of oligomers containing the β3 and β4 subunits of the rat nicotinic receptor.J. Neurosci. 17, 1531–1538.

    PubMed  CAS  Google Scholar 

  • Gerzanich V., Kuryatov A., Anand R., and Lindstrom J. (1997) “Orphan” α6 nicotinic AChR subunit can form a functional heteromeric acetylcholine receptor.Mol. Pharmacol. 51, 320–327.

    PubMed  CAS  Google Scholar 

  • Grady S., Marks M. J., Wonnacott S., and Collins A. C. (1992) Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum.J. Neurochem. 59, 848–856.

    Article  PubMed  CAS  Google Scholar 

  • Gray R., Rajan A. S., Radcliffe K. A., Yakehiro M., and Dani J. A. (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine.Nature 383, 713–716.

    Article  Google Scholar 

  • Le Novère N., Zoli M., and Changeux J.-P. (1996) Neuronal nicotinic receptor α6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain.Eur. J. Neurosci. 8, 2428–2439.

    Article  Google Scholar 

  • Luetje C. W. and Patrick J. (1991) Both α- and β-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors.J. Neurosci. 11, 837–845.

    PubMed  CAS  Google Scholar 

  • McGehee D. S. and Role L. W. (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons.Annu. Rev. Physiol. 57, 521–546.

    Article  PubMed  CAS  Google Scholar 

  • McGehee D. S., Heath M. J. S., Gelber S., Devay P., and Role L. W. (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors.Science 269, 1692–1696.

    Article  PubMed  CAS  Google Scholar 

  • Murphy L. D., Herzog C. E., Rudick J. B., Fojo A. T., and Bates S. E. (1990) Use of the polymerase chain reaction in the quantitation ofmdr-1 gene expression.Biochemistry 29, 10,351–10,356.

    CAS  Google Scholar 

  • Nakano I. and Hirano A. (1984) Parkinson’s disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease.Ann. Neurol. 15, 415–418.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G. and Watson C. (1986)The Rat Brain in Stereotaxic Coordinates. Academic, Sydney, Australia.

    Google Scholar 

  • Ramirez-Latorre J., Yu C. R., Qu X., Perin F., Karlin A., and Role L. (1996) Functional contributions of α5 subunit to neuronal acetylcholine receptor channels.Nature 380, 347–351.

    Article  Google Scholar 

  • Rao T. S., Correa L. D., Reid R. T., and Lloyd G. K. (1996) Evaluation of antinociceptive effects of neuronal nicotinic acetylcholine (NAChR) ligands in the rat tail-flick assay.Neuropharmacology 35, 393–405.

    Article  Google Scholar 

  • Sacaan A. I., Dunlop J. L., and Lloyd G. K. (1995) Pharmacological characterization of neuronal acetylcholine gated ion channel receptor-mediated hippocampal norepinephrine and striatal dopamine release from rat brain slices.J. Pharmacol. Exp. Ther. 274, 224–230.

    PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E. F., and Maniatis T. (1989)Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 9.34–9.44.

    Google Scholar 

  • Sargent P. (1993) The diversity of neuronal nicotinic acetylcholine receptors.Annu. Rev. Neurosci. 16, 403–443.

    Article  PubMed  CAS  Google Scholar 

  • Schulz D. W. and Zigmond R. E. (1989) Neuronal bungarotoxin blocks the nicotinic stimulation of endogenous dopamine release from rat striatum.Neurosci. Lett. 98, 310–316.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz R. D., Lehmann J., and Kellar K. J. (1984) Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin axons in brain.J. Neurochem. 42, 1495–1498.

    Article  PubMed  CAS  Google Scholar 

  • Séguéla P., Wadiche J., Dineley-Miller K., Dani J. A., and Patrick J. W. (1993) Molecular cloning, functional properties, and distribution of rat brain α7: A nicotinic cation channel highly permeable to calcium.J. Neurosci. 13, 596–604.

    PubMed  Google Scholar 

  • Stoof J. C., Vermeulen R. J., Van Royen E. A., Drukarch B., Voorn P., Wolters E. C., et al. (1996) Dopaminergic systems and Parkinson’s disease: some latest developments in pathogenetic, diagnostic and pharmacotherapeutic investigations.Neurosci. Res. Commun. 18, 133–142.

    Article  Google Scholar 

  • Ungerstedt U. (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons.Eur. J. Pharmacol. 5, 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U. and Arbuthnott G. W. (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system.Brain Res. 24, 485–493.

    Article  PubMed  CAS  Google Scholar 

  • Vernallis A. B., Conroy W. G., and Berg D. K. (1993) Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes.Neuron 10, 451–464.

    Article  PubMed  CAS  Google Scholar 

  • Wada E., McKinnon D., Heinemann S., Patrick J., and Swanson L. W. (1990) The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (α5) in the rat central nervous system.Brain Res. 526, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Wada E., Wada K., Boulter J., Deneris E., Heinemann S., Patrick J., et al. (1989) Distribution of α2, α3, α4, and β2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat.J. Comp. Neurol. 284, 314–335.

    Article  PubMed  CAS  Google Scholar 

  • Wang F., Gerzanich V., Wells G. B., Anand R., Peng X., Keyser K., and Lindstrom J. (1996) Assembly of human neuronal nicotinic receptor α5 subunits with α3, β2, and β4 subunits.J. Biol. Chem. 271, 17,656–17,665.

    Google Scholar 

  • Wonnacott S., Soliakov L., Wilkie G., Redfern P., and Marshall D. (1996) Presynaptic nicotinic acetylcholine receptors in the brain.Drug Dev. Res. 38, 149–159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, K.J., Jones, J.M., Sacaan, A.I. et al. 6-hydroxydopamine lesion of rat nigrostriatal dopaminergic neurons differentially affects nicotinic acetylcholine receptor subunit mRNA expression. J Mol Neurosci 10, 251–260 (1998). https://doi.org/10.1007/BF02761778

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02761778

Index Entries

Navigation