Skip to main content
Log in

A dimension theorem for division rings

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

LetD be a division algebra over a fieldk, letn be an arbitrary positive integer, and letk(x 1,...,x n) denote the rational function field inn variables overk. In this note we complete previous work by proving that the following three conditions are equivalent: (i) there exists an integerj such that the matrix ringM j(D) contains a commutative subfield which has transcendence degreen overk; (ii) K dim (Dk k(x 1,...,x n )) =n; (iii) gl. dim (Dk k(x 1,...,x n )) =n. The crucial tool in the proof of this theorem is the Nullstellensatz forD[x 1,...,x n] which was obtained by Amitsur and Small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Amitsur and L. W. Small,Polynomials over division rings, Israel J. Math.31 (1978), 353–358.

    MATH  MathSciNet  Google Scholar 

  2. S. Bhatwadekar,On the global dimension of some filtered algebras, J. London Math. Soc. (2)13 (1976), 239–248.

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Kaplansky,Fields and Rings, University of Chicago Press, Chicago, 1969.

    Google Scholar 

  4. D. S. Passman,The Algebraic Structure of Group Rings, John Wiley and Sons, New York-London, 1977.

    MATH  Google Scholar 

  5. R. Rentschler and P. Gabriel,Sur la dimension des anneaux et ensembles ordonnes, C. R. Acad. Sci Paris Ser. A,265 (1967), 712–715.

    MATH  MathSciNet  Google Scholar 

  6. R. Resco,Transcendental division algebras and simple Noetherian rings, Israel J. Math.32 (1979), 236–256.

    MATH  MathSciNet  Google Scholar 

  7. G. S. Rinehart and A. Rosenberg,The global dimension of Ore extensions and Weyl algebras, inAlgebra, Topology, and Category Theory (M. Tierney, ed.), Academic Press, New York, 1976, pp. 169–180.

    Google Scholar 

  8. A. Rosenberg and J. T. Stafford,Global dimension of Ore extensions, inAlgebra, Topology, and Category Theory (M. Tierney, ed.), Academic Press, New York, 1976, pp. 181–188.

    Google Scholar 

  9. P. F. Smith,On the intersection theorem, Proc. London Math. Soc. (3)21 (1970), 385–398.

    Article  MathSciNet  Google Scholar 

  10. B. Stenström,Rings of Quotients, Springer-Verlag, Berlin-New York, 1975.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resco, R. A dimension theorem for division rings. Israel J. Math. 35, 215–221 (1980). https://doi.org/10.1007/BF02761192

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02761192

Keywords

Navigation