Abstract
This paper is concerned with the convergence of the sequence χ n =(I+λ n A)−1χ n−1 whereA is maximal monotone and λ n >0. Various assumptions onA and λ n are considered.
Similar content being viewed by others
Bibliographie
J. B. Baillon,Quelques propriétés de convergence asymptotique pour les contractions impaires, C. R. Acad. Sci. Paris283 (1976), 587–590.
J. B. Baillon and G. Haddad,Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones, Israel J. Math.26 (1977), 137–150.
H. Brezis,Opérateurs maximaux monotones, Lecture note no5, North-Holland, 1973.
F. Browder and W. Petryshyn,The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Amer. Math. Soc.72 (1966), 571–575.
R. Bruck,Asymptotic convergence of nonlinear contraction semi-groups in Hilbert space, J. Functional Analysis18 (1975), 15–26.
R. Bruck,An interative solution of a variational inequality for certain monotone operators in Hilbert space, Bull. Amer. Math. Soc.81 (1975), 890–892, Corrigendum82 (1976).
M. Crandall and A. Pazy,On the range of accretive operators, Israel J. Math.,27 (1977), 235–246.
A. Genel and J. Lindenstrauss,An example concerning fixed points, Israel J. Math.22 (1975), 81–86.
Z. Opial,Weak convergence of the successive approximations for nonexpansive mappins in Banach spaces, Bull. Amer. Math. Soc.73 (1967), 591–597.
R. T. R. Rockafellar,Monotone operators and the proximal point algorithm, SIAM J. Control14 (1976), 877–898.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Brezis, H., Lions, P.L. Produits infinis de resolvantes. Israel J. Math. 29, 329–345 (1978). https://doi.org/10.1007/BF02761171
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02761171