Skip to main content
Log in

A comparison of calcium phosphate coprecipitation and electroporation

Implications for studies on the genetic effects of DNA damage

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Plasmid-based transfection assays provide a rapid means to measure homologous and nonhomologous recombination in mammalian cells. Often it is of interest to examine the stimulation of recombination by DNA damage induced by radiation, genotoxic chemicals, or nucleases. Transfection is frequently performed by using calcium phosphate coprecipitation (CPP), because this method is well suited for handling large sample sets, and it does not require expensive reagents or equipment. Alternative transfection methods include lipofection, microinjection, and electroporation. Since DNA strand breaks are known to stimulate both homologous and nonhomologous recombination, the induction of nonspecific damage during transfection would increase background recombination levels and thereby reduce the sensitivity of assays designed to detect the stimulation of recombination by experimentally induced DNA damage. In this article, we compare the stimulatory effects of nuclease-induced double-strand breaks (DSBs) on homologous and nonhomologous recombination for molecules transfected by CPP and by electroporation. Although electroporation yielded fewer transfectants, both nonhomologous and homologous recombination were stimulated by nuclease-induced DSBs to a greater degree than with CPP. Ionizing radiation is an effective agent for inducing DNA strand breaks, but previous studies using CPP generally showed little or no stimulation of homologous recombination among plasmids damaged with ionizing radiation. By contrast, we found clear dose-dependent enhancement of recombination with irradiated plasmids transfected using electroporation. Thus, electroporation provides a higher signal-to-noise ratio for transfection-based studies of damage-induced recombination, possibly reflecting less nonspecific damage to plasmid DNA during transfection of mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lehmann, A. R. and Oomen, A. (1985) Effect of DNA damage on the expression of the chloramphenicol acetyltransferase gene after transfection into diploid human fibroblasts.Nucleic Acids Res. 13, 2087–2095.

    Article  PubMed  CAS  Google Scholar 

  2. Postel, E. (1985) Enhancement of genetic transformation frequencies of mammalian cell cultures by damage to the cell DNA.Mol. General Genet. 201, 136–139.

    Article  CAS  Google Scholar 

  3. Herskind, C. and Thacker, J. (1988) Inactivation of DNA-mediated transformation of hamster cells by γ-rays and deoxyribonuclease I.Mutat. Res. 198, 169–178.

    PubMed  CAS  Google Scholar 

  4. Moraes, E. C., Keyse, S. M., Pidoux, M., and Tyrrell, R. M. (1989) The spectrum of mutations generated by passage of a hydrogen peroxide damaged shuttle vector plasmid through a mammalian host.Nucleic Acids Res. 17, 8301–8312.

    Article  PubMed  CAS  Google Scholar 

  5. Akman, S. A., Forrest, G. P., Doroshow, J. H., and Dizdaroglu, M. (1991) Mutation of potassium permanganate- and hydrogen peroxide-treated plasmid pZ189 replicating in CV-1 monkey kidney cells.Mutat. Res. 261, 123–130.

    Article  PubMed  CAS  Google Scholar 

  6. Bennett, R. A. O., Swerdlow, P. S., and Povirk, L. F. (1993) Spontaneous cleavage of bleomycin-induced abasic sites in chromatin and their mutagenicity in mammalian shuttle vectors.Biochemistry 32, 3188–3195.

    Article  PubMed  CAS  Google Scholar 

  7. Kucherlapati, R. S., Eves, E. M., Song, K.-Y., Morse, B. S., and Smithies, O. (1984) Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA.Proc. Natl. Acad. Sci. USA 81, 3153–3157.

    Article  PubMed  CAS  Google Scholar 

  8. Lin, F.-L., Sperle, K., and Sternberg, N. (1984) Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process.Mol. Cell. Biol. 4, 1020–1034.

    PubMed  CAS  Google Scholar 

  9. Lin, F.-L., Sperle, K., and Sternberg, N. (1987) Extrachromosomal recombination in mammalian cells as studied with single-and double-stranded DNA substrates.Mol. Cell. Biol. 7, 129–140.

    PubMed  CAS  Google Scholar 

  10. Lin, F.-L., Sperle, K., and Sternberg, N. (1990) Intermolecular recombination between DNAs introduced into mouse L cells is mediated by a nonconservative pathway that leads to crossover products.Mol. Cell. Biol. 10, 103–112.

    PubMed  CAS  Google Scholar 

  11. Lin, F.-L., Sperle, K., and Sternberg, N. (1990) Repair of double-stranded breaks by homologous fragments during transfer of DNA into mouse L cells.Mol. Cell. Biol. 10, 113–119.

    PubMed  CAS  Google Scholar 

  12. Wake, C. T., Vernaleone, F., and Wilson, J. H. (1985) Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells.Mol. Cell. Biol. 5, 2080–2089.

    PubMed  CAS  Google Scholar 

  13. Song, K.-Y., Chekuri, L., Rauth, S., Ehrlich, S., and Kucherlapati, R. (1985) Effect of double-strand breaks on homologous recombination in mammalian cells and extracts.Mol. Cell. Biol. 5, 3331–3336.

    PubMed  CAS  Google Scholar 

  14. Chakrabarti, S. and Seidman, M. M. (1986) Intramolecular recombination between transfected repeated sequences in mammalian cells is nonconservative.Mol. Cell. Biol. 6, 2520–2526.

    PubMed  CAS  Google Scholar 

  15. Debenham, P. G., Webb, M. B. T., Stretch, A., and Thacker, J. (1988) Examination of vectors with two dominant selectable genes for DNA repair and mutation studies in mammalian cells.Mutat. Res. 199, 145–158.

    PubMed  CAS  Google Scholar 

  16. Deng, W. P. and Nickoloff, J. A. (1994) Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells.Mol. Cell. Biol. 14, 400–406.

    PubMed  CAS  Google Scholar 

  17. Miller, E. M., Hough, H. L., Cho, J. W., and Nickoloff, J. A. (1997) Mismatch repair by efficient nick-directed, and less efficient mismatch-specific mechanisms in homologous recombination intermediates in Chinese hamster ovary cells.Genetics 147, 743–753.

    PubMed  CAS  Google Scholar 

  18. Taghian, D. G. and Nickoloff, J. A. (1998) Biased short tract repair of palindromic loop mismatches in mammalian cells.Genetics 148, 1257–1268.

    PubMed  CAS  Google Scholar 

  19. Mekeel, K. L., Tang, W., Kachnic, L. A., Luo, C. M., Defrank, J. S., and Powell, S. N. (1997) Inactivation of p53 results in high-rates of homologous recombination.Oncogene 14, 1847–1857.

    Article  PubMed  CAS  Google Scholar 

  20. Luo, C.-M., Tang, W., Mekeel, K. L., DeFrank, J. S., Anne, P. R., and Powell, S. N. (1996) High frequency and error-prone DNA recombination in ataxia telangiectasia cell lines.J. Biol. Chem. 271, 4497–4503.

    Article  PubMed  CAS  Google Scholar 

  21. Hellgren, D. (1992) Mutagen-induced recombination in mammalian cells in vitro.Mutat. Res. 284, 37–51.

    PubMed  CAS  Google Scholar 

  22. Graham, F. L. and van der Eb, A. J. (1973) Transformation of rat cells by DNA of human adenovirus 5.Virology 52, 456–467.

    Article  PubMed  CAS  Google Scholar 

  23. McCutchen, J. H. and Pagano, J. S. (1968) Enhancement of the infectivity of SV40 deoxyribonucleic acid with diethylaminoethyl-dextran.J. Natl. Cancer Inst. 41, 351–357.

    Google Scholar 

  24. Huberman, M., Berg, P. E., Curcio, M. J., Dipietro, J., Henderson, A. S., and Anderson, W. F. (1984) Fate and structure of DNA microinjected into mouse TK{+-} L cells.Exp. Cell Res. 153, 347–362.

    Article  PubMed  CAS  Google Scholar 

  25. Folger, K. R., Wong, E. A., Wahl, G., and Capecchi, M. R. (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules.Mol. Cell. Biol. 2, 1372–1387.

    PubMed  CAS  Google Scholar 

  26. Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northop, J. P., Ringold, G. M., and Danielsen, M. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure.Proc. Natl. Acad. Sci. USA 84, 7413–7417.

    Article  PubMed  CAS  Google Scholar 

  27. Taghian, D. G. and Nickoloff, J. A. (1995) Electrotransformation of Chinese hamster ovary cells, inAnimal Cell Electroporation and Electrofusion Protocols (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 115–121.

    Chapter  Google Scholar 

  28. Potter, H., Weir, L., and Leder, P. (1984) Enhancer-dependent expression of human (kappa) immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation.Proc. Natl. Acad. Sci. USA 81, 7161–7165.

    Article  PubMed  CAS  Google Scholar 

  29. Loyler, A., Scangos, G. A., and Ruddle, F. H. (1982) Mechanisms of DNA uptake by mammalian cells: fate of exogenously added DNA monitored by the use of fluorescent dyes.Proc. Natl. Acad. Sci. USA 79, 422–426.

    Article  Google Scholar 

  30. Calos, M. P., Lebkowski, J. S., and Botchan, M. R. (1983) High mutation frequency in DNA transfected into mammalian cells.Proc. Natl. Acad. Sci. USA 80, 3015–3019.

    Article  PubMed  CAS  Google Scholar 

  31. Ashman, C. R. and Davidson, R. L. (1984) High spontaneous mutation frequency in shuttle vector sequences recovered from mammalian cellular DNA.Mol. Cell. Biol. 4, 2266–2272.

    PubMed  CAS  Google Scholar 

  32. Lebkowski, J. S., DuBridge, R. B., Antell, E. A., Greisen, K. S., and Calos, M. P. (1984) Transfected DNA is mutated in monkey, mouse, and human cells.Mol. Cell. Biol. 4, 1951–1960.

    PubMed  CAS  Google Scholar 

  33. Wake, C. T., Gudewicz, T., Porter, T., White, A., and Wilson, J. H. (1984) How damaged is the biologically active subpopulation of transfected DNA?Mol. Cell. Biol. 4, 387–398.

    PubMed  CAS  Google Scholar 

  34. Bardwell, L. (1989) The mutagenic and carcinogenic effects of gene transfer.Mutagenesis 4, 245–253.

    Article  PubMed  CAS  Google Scholar 

  35. Strain, A. J. and Wyllie, A. H. (1984) The uptake and stability of simian-virus-40 DNA after calcium phosphate transfection of CV-1 cells.Biochem. J. 218, 475–482.

    PubMed  CAS  Google Scholar 

  36. Brandt, C. R., Buonaguro, F. M., McDougall, J. K., and Galloway, D. A. (1987) Plasmid mediated mutagenesis of a cellular gene in transfected eukaryotic cells.Nucleic Acids Res. 15, 561–573.

    Article  PubMed  CAS  Google Scholar 

  37. Nickoloff, J. A., ed. (1995)Animal Cell Electroporation and Electrofusion Protocols, Humana, Totowa, NJ.

    Google Scholar 

  38. Weaver, J. C. (1995), Electroporation theory, inAnimal Cell Electroporation and Electrofusion Protocols (Nickoloff, J. A., ed.), Humana, Totowa, NJ, pp. 3–28.

    Google Scholar 

  39. Xie, T. D., Sun, L., and Tsong, T. Y. (1993) Study of mechanisms of electric field-induced DNA transfection, V. Effects of DNA topology on surface binding, cell uptake, expression, and integration into host chromosomes of DNA in the mammalian cell.Biophys. J. 65, 1684–1689.

    Article  PubMed  CAS  Google Scholar 

  40. Nickoloff, J. A. and Reynolds, R. J. (1990) Transcription stimulates homologous recombination in mammalian cells.Mol. Cell. Biol. 10, 4837–4845.

    PubMed  CAS  Google Scholar 

  41. Thacker, J. (1989) The use of integrating DNA vectors to analyse the molecular defects in ionising radiation-sensitive mutants of mammalian cells including ataxia telangiectasia.Mutat. Res. 220, 187–204.

    PubMed  CAS  Google Scholar 

  42. Xia, F., Amundson, S. A., Nickoloff, J. A., and Liber, H. L. (1994) Different capacities for recombination in closely related human lymphoblastoid cell lines with different mutational responses to X-irradiation.Mol. Cell. Biol. 14, 5850–5857.

    PubMed  CAS  Google Scholar 

  43. Jasin, M., de Villiers, J., Weber, F., and Schaffner, W. (1985) High frequency of homologous recombination in mammalian cells between endogenous and introduced SV40 genomes.Cell 43, 695–703.

    Article  PubMed  CAS  Google Scholar 

  44. Smih, F., Rouet, P., Romanienko, P. J., and Jasin, M. (1995) Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells.Nucleic Acids Res. 23, 5012–5019.

    Article  PubMed  CAS  Google Scholar 

  45. Elliott, B., Richardson, C., Winderbaum, J., Nickoloff, J. A., and Jasin, M. (1998) Gene conversion tracts in mammalian cells from double-strand break repair.Mol. Cell. Biol. 18, 93–101.

    PubMed  CAS  Google Scholar 

  46. Lin, F.-L., Sperle, K., and Sternberg, N. (1985) Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences.Proc. Natl. Acad. Sci. USA 82, 1391–1395.

    Article  PubMed  CAS  Google Scholar 

  47. Thomas, K. R., Folger, K. R., and Capecchi, M. R. (1986) High frequency targeting of genes to specific sites in the mammalian genome.Cell 44, 419–428.

    Article  PubMed  CAS  Google Scholar 

  48. Jasin, M. and Berg, P. (1988) Homologous integration in mammalian cells without target gene selection.Genes Dev. 2, 1353–1363.

    Article  PubMed  CAS  Google Scholar 

  49. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989)Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  50. Southern, P. J. and Berg, P. (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter.J. Mol. Appl. Genet. 1, 327–341.

    PubMed  CAS  Google Scholar 

  51. Mulligan, R. C. and Berg, P. (1981) Factors governing the expression of a bacterial gene in mammalian cells.Mol. Cell. Biol. 1, 449–459.

    PubMed  CAS  Google Scholar 

  52. Davis, L. G., Dibner, M. D., and Battey, J. F. (1986)Basic Methods in Molecular Biology. Elsevier Science, Amsterdam.

    Google Scholar 

  53. Mulligan, R. C. and Berg, P. (1981) Selection for animal cells that express theEscherichia coli gene coding for xanthine-guanine phosphoribosyltransferase.Proc. Natl. Acad. Sci. USA 78, 2072–2076.

    Article  PubMed  CAS  Google Scholar 

  54. Jimeniz, A. and Davies, J. (1980) Expression of a transposable antibiotic resistance element inSaccharomyces.Nature 287, 869–871.

    Article  Google Scholar 

  55. Spivak, G., Ganeson, A. K., and Hanawalt, P. C. (1984) Enhanced transformation of human cells by UV-irradiated pSV2 plasmids.Mol. Cell. Biol. 4, 1169–1171.

    PubMed  CAS  Google Scholar 

  56. van Duin M., Westerveld, A., and Hoeijmakers, J. H. J. (1985) UV stimulation of DNA-mediated transformation of human cells.Mol. Cell. Biol. 5, 734–741.

    PubMed  Google Scholar 

  57. Spivak, G., Leadon, S. A., Vos, J. M., Meade, S., Hanawalt, P. C., and Ganesan, A. K. (1988) Enhanced transforming activity of pSV2 plasmids in human cells depends on the type of damage introduced into the plasmid.Mutat. Res. 193, 97–108.

    PubMed  CAS  Google Scholar 

  58. Barbis, D. P., Schultz, R. A., and Friedberg, E. C. (1986) Isolation and partial characterization of virus-transformed cell lines representing the A, G and variant complementation groups of xeroderma pigmentosum.Mutat. Res. 165, 175–184.

    PubMed  CAS  Google Scholar 

  59. Nairn, R. S., Humphrey, R. M., and Adair, G. M. (1988) Transformation of UV-hypersensitive Chinese hamster ovary cell mutants with UV-irradiated plasmids.Int. J. Radiat. Biol. 53, 249–260.

    Article  CAS  Google Scholar 

  60. Thompson, L. H., Salazar, E. P., Brookman, K. W., Collins, C. C., Stewart, S. A., Busch, D. B., and Weber, C. A. (1987) Recent progress with the DNA repair mutants of Chinese hamster ovary cells.J. Cell Sci. 6, 97–110.

    CAS  Google Scholar 

  61. Hare, J. T. and Taylor, J. H. (1985) One role for DNA methylation in vertebrate cells is strand discrimination in mismatch repair.Proc. Natl. Acad. Sci. USA 82, 7350–7354.

    Article  PubMed  CAS  Google Scholar 

  62. Holmes, J. Jr., Clark, S., and Modrich, P. (1990) Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines.Proc. Natl. Acad. Sci. USA 87, 5837–5841.

    Article  PubMed  CAS  Google Scholar 

  63. Fang, W.-H. and Modrich, P. (1993) Human strandspecific mismatch repair occurs by a bidirectional mechanism similar to that of the bacterial reaction.J. Biol. Chem. 268, 11,838–11,844.

    CAS  Google Scholar 

  64. Umar, A., Boyer, J. C., and Kunkel, T. A. (1994) DNA loop repair by human cell extracts.Science 266, 814–816.

    Article  PubMed  CAS  Google Scholar 

  65. Meaking, W. S., Edgerton, J., Wharton, C. W., and Meldrum, R. A. (1995) Electroporation-induced damage in mammalian cell DNA.Biochim. Biophys. Acta 1264, 357–362.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jac A. Nickoloff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nickoloff, J.A., Spirio, L.N. & Reynolds, R.J. A comparison of calcium phosphate coprecipitation and electroporation. Mol Biotechnol 10, 93–101 (1998). https://doi.org/10.1007/BF02760857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02760857

Index Entries

Navigation