Advertisement

Israel Journal of Mathematics

, Volume 1, Issue 4, pp 239–247 | Cite as

Scissor congruence

  • Lester Dubins
  • Morris W. Hirsch
  • Jack Karush
Article

Abstract

It is shown that certain simple figures can not be cut by scissors into pieces that can be reassembled to form certain other simple figures.

Keywords

Convex Body Jordan Curve Rigid Motion Finite Union Topological Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boltyanskii, V.G., 1963, Equivalent and Equidecomposable Figures, D.C. Heath and Co., Boston.Google Scholar
  2. 2.
    Enriques, Federigo, 1912,Questioni Riguardanti le Mathematiche Elementari, Volume 1, Articoli di U. Amaldi, “Sulla teoria della equivalenza”, Bologna, Nicola Zanichelli, pp. 145–198.Google Scholar
  3. 3.
    Fejes Tóth, L., 1953,Lagerungen in der Ebene, auf der Kugel und im Raum, Springer.Google Scholar
  4. 4.
    Hadwiger, H., 1957, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer.Google Scholar
  5. 5.
    Sierpinski, Waclaw, 1954, On the Congruence of Sets and Their Equivalence by Finite Decomposition, Lucknow University.Google Scholar

Copyright information

© Hebrew University 1963

Authors and Affiliations

  • Lester Dubins
    • 1
  • Morris W. Hirsch
    • 1
  • Jack Karush
    • 1
  1. 1.University of CaliforniaBerkeley

Personalised recommendations