Advertisement

Programming and Computer Software

, Volume 26, Issue 1, pp 31–35 | Cite as

Involutive bases of ideals in the ring of polynomials

  • A. V. Astrelin
  • O. D. Golubitsky
  • E. V. Pankratiev
Article

Abstract

This paper continues the study of the relationship between Gröbner bases and involutive bases of polynomial ideals started in [1, 5]. Involutive bases are considered as Gröbner bases with some fixed normal form algorithms. It is shown that once the search order of critical pairs is coordinated, the sameS-elements and their reductions appear in the same order in the process of the construction of Gröbner bases and involutive bases.

Keywords

Normal Form Canonical Form Polynomial Ideal Critical Pair Minimal Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astrelin, A.V., Golubitsky, O.D., and Pankratiev, E.V., Comparison of Algorithms for the Calculation of Gröbner and Involutive Bases,Trudy mezhdunarodnogo algebraicheskogo seminara posvyashchennogo 70-letiyu kafedry vysshei algebry MGU (Proc. Int. Seminar in Algebra Dedicated to the 70th Anniversary of the Higher Algebra Chair of the Moscow Univ.), Moscow: Mosk. Gos. Univ., 1999, pp. 9–10.Google Scholar
  2. 2.
    Latyshev, V.N.,Kombinatornaya teoriya kolets. Standartnye bazisy (Combinatorial Theory of Rings: Standard Bases), Moscow: Mosk. Gos. Univ., 1988.zbMATHGoogle Scholar
  3. 3.
    Mikhalev, A.V. and Pankratiev, E.V.,Komp’yuternaya algebra. Vychisleniya v differentsial’nykh i raznostnykh modulyakh (Computer Algebra: Computations in Differential and Difference Modules), Moscow: Mosk. Gos. Univ., 1989.Google Scholar
  4. 4.
    Ufnarovskii, V., Combinatorial and Asymptotic Methods in Algebra,Itogi Nauki Tekh., Ser. Sovr. Probl. Mat., Fundam. Napravl., vol. 57, Moscow: VINITI, 1990, pp. 5–177.Google Scholar
  5. 5.
    Astrelin, A.V., Golubitsky, O.D., and Pankratiev, E.V., Gröbner Bases and Involutive Bases,Proc. Int. Conf. Dedicated to the 90th Birthday of A.G. Kurosh, Gruyter, 1999 (in press).Google Scholar
  6. 6.
    Becker, T., Weispfenning, V., and Kredel, H.,Gröbner Bases: A Computational Approach to Commutative Algebra, Graduate Texts in Math., vol. 141, New York: Springer, 1993.zbMATHGoogle Scholar
  7. 7.
    Buchberger, B., An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal,PhD Thesis, Univ. of Insbruck, Inst. for Math., 1965.Google Scholar
  8. 8.
    Collart, S., Kalkbrener, M., and Mall, D., The Gröbner Walk,Dept. Math., Swiss Federal Inst. of Technol., Zürich, 1993.Google Scholar
  9. 9.
    Faugère, J.C., Gianni, P., Lazard, D., and Mora, T., Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering,J. Symb. Comp., 1989, vol. 16, pp. 329–344.CrossRefGoogle Scholar
  10. 10.
    Gerdt, V.P., Involutive Division Technique: Some Generalizations and Optimizations,Preprint of Joint Inst. for Nucl. Research, Dubna, E5-98-151, 1998.Google Scholar
  11. 11.
    Gerdt, V.P. and Blinkov, Yu.A., Involutive Bases of Polynomial Ideals,Math. Comp. Simul., 1998, vol. 45, pp. 519–542.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Janet, M., Sur les systémes d’équationes aux dérivées partielles,J. Math. Pure Appl., 1920, vol. 3, pp. 65–151.Google Scholar
  13. 13.
    Kolchin, E.R.,Differential Algebra and Algebraic Groups, New York: Academic, 1973.zbMATHGoogle Scholar
  14. 14.
    Mora, T. and Robbiano, L., The Gröbner Fan of an Ideal,J. Symb. Comp., 1988, vol. 6, pp. 183–208.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Thomas, J.,Differential Systems, New York: American Mathematical Society, 1937.Google Scholar
  16. 16.
    Zharkov, A. Yu. and Blinkov, Yu.A., Involution Approach to Investigating Polynomial Systems,Proc. Int. IMACS Symp. Symb. Comp.: New Trends and Developments, 1993.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • A. V. Astrelin
    • 1
  • O. D. Golubitsky
    • 1
  • E. V. Pankratiev
    • 1
  1. 1.Department of Mathematics and MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations