Skip to main content
Log in

On the inversion of Noether's theorem in the Lagrangian formalism

II.—Classical field theory

Об обратной теореме Ноэтера в лагранжианном формализме

II. Классическая теория поля

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

Both the «direct» and the «inverse» Noether's theorems are generalized to allow for infinitesimal transformations that add to the action functional an integral over a 4-divergence and an integral over a function vanishing «on the orbit» (Noether transformations). It is then shown that: i) to every Noether transformation there corresponds a«weak» continuity equation and a family of Nother transformations (Noether family) defining the same continuity equation; ii) every Noether family contains an invariance transformation; iii) to every «weak» continuity equation there corresponds a Noether family; iv) every Noether family contains a subset of Noether transformations equivalent to a 4-divergence translation of the Lagrangian density.

Riassunto

Sia il teorema «diretto» che quello «inverso» di Noether vengono generalizzati, in modo da tener conto di trasformazioni infinitesime che aggiungono al funzionale d'azione un integrale su una quadridivergenza ed un integrale su di una funzione che si annulla «sull'orbita» (trasformazioni di Noether). Si dimostra chea) ad ogni trasformazione di Noether corrisponde unaequazione di continuità «debole» e una famiglia di trasformazioni di Noether (famiglia di Noether) che definiscono la stessa equazione di continuità;b) ogni famiglia di Noether contiene una trasformazione di invarianza;c) ad ogni equazione di continuità «debole» corrisponde una famiglia di Noether;d) ogni famiglia di Noether contiene una sottofamiglia di trasformazioni di Noether equivalenti a una traslazione, per mezzo di una quadridivergenza, della densità Lagrangiana.

Резюме

Обобщаются и «прямая» и «обратная» теоремы Ноэтера, чтобы учесть бесконечно малые преобразования, которые добавляют к функционалу действия интеграл от 4-мерной дивергенции и интеграл от функции, обращающейся в нуль «на орбите» (преобразования Ноэтера). Затем показывается, что 1) каждому преобразованию Ноэтера соответствует«слабое» уравнение неирерывности и семейство преобразований Ноэтера (семейство Ноэтера), определяющее то же уравнение непрерывности; 2) каждое семейство Ноэтера содержит инвариантное преобразование; 3) каждое «слабое» уравнение непрерывности соответствует семейству Ноэтера; 4) каждое семейство Ноэтера содержит подсистему преобразований Ноэтера, эквивалентных трансляции 4-мерной дивергенции для плотности лагранжиана.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. C. G. Jacobi:Vorlesungen über Dynamik, edited byA. Clebsch (Reimer, 1884), p. 163. We are grateful to Prof.G. J. Whitrow who kindly made us acquainted with Jacobi's book.

  2. See for instanceE. P. Wigner:Progr. Theor. Phys.,11, 437 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  3. F. Klein:Über die Diffentialgesetze für die Erhaltung von Impuls und Energie in der Einsteinschen Gravitationstheorie, Kgl. Ges. d. Wiss. Nachrichten (Göttingen), Math. Phys. Klass (1918), p. 171.

  4. E. Noether:Invariant Variationsprobleme, Kgl. Ges. d. Wiss. Nachrichten (Göttingen), Math. Phys. Klass (1918), p. 235.

  5. E. Bessel-Hagen:Über die Erhaltungssätze der Elektrodynamik, Mathematische Annalen,84, 258 (1921).

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Pauli:Relativitätstheorie, inEncyklopedie der mathematischen Wissenschaften, Vol.5, Sect.23 (Leipzig, 1921);Rev. Mod. Phys.,13, 203 (1941).

  7. P. G. Bergmann:Phys. Rev.,75, 680 (1949);J. Heller:Phys. Rev.,81, 946 (1951);P. G. Bergmann andR. Schiller:Phys. Rev.,89, 4 (1953);J. N. Goldberg:Phys. Rev.,89, 263 (1953);P. G. Bergmann:Phys. Rev.,112, 287 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  8. J. G. Fletcher:Rev. Mod. Phys.,32, 65 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Trautman:Sur les lois de conservation dans les espaces de Riemann, inColloques Internationaux du CNRS, Les théories relativistes de la gravitation (Paris, 1962);Conservation laws in general relativity, inGravitation, edited byL. Witten (New York, 1962).

  10. E. L. Hill:Rev. Mod. Phys.,23, 253 (1951).

    Article  ADS  Google Scholar 

  11. W. R. Davis andG. H. Katzin:Amer. Journ. Phys.,30, 750 (1962);T. H. Boyer:Amer. Journ. Phys.,34, 475 (1966);Ann. of Phys.,42, 445 (1967)B. Chern andA. Tubis:Amer. Journ. Phys.,35, 254 (1967);J. Leite Lopes:Classical symmetries—an elementary survey, inSelected Topics in Solid State and Theoretical Physics, edited byM. Bemporad (London, 1968); see alsoI. M. Gel'fand andS. V. Fomin:Calculus of Variations (New York, 1963), p. 79, 177.

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Trautman:Comm. Math. Phys.,6, 248 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  13. L. J. Tassie andH. A. Buchdahl:Austr. Journ. Phys.,17, 431 (1964);H. A. Buchdahl andL. J. Tassie:Austr. Journ. Phys.,18, 109 (1965);H. H. Denman:Journ. Math. Phys.,6, 1611 (1965);7, 1910 (1966);C. A. López:Nuovo Cimento 40 A, 19 (1965);J. M. Lévy-Leblond:Comm. Math. Phys.,12, 64 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  14. Y. Takahashi andH. Umezawa:Nucl. Phys.,51, 193 (1964);D. Lurié, Y. Takahashi andH. Umezawa:Journ. Math. Phys.,7, 1478 (1966);Y. Takahashi:Non-Lagrangian theories and generalized conservation laws, inSymposia on Theoretical Physics and Mathematics (London, 1968).

    Article  MathSciNet  Google Scholar 

  15. C. Palmieri andB. Vitale:Nuovo Cimento,66 A, 299 (1970); to be referred to hereafter as I.

    Article  ADS  MathSciNet  Google Scholar 

  16. T. Dass:Phys. Rev.,145, 1011 (1966);150, 1251 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Steudel:Symmetrieeigenschaften und Erhaltungssätze, Dissertation (Jena, 1966) (Steudel's dissertation contains the most thorough analysis of Noether's theorems the authors are aware of);Ann. der Phys.,20, 110 (1967).

    Google Scholar 

  18. D. M. Lipkin:Journ. Math. Phys.,5, 696 (1964);T. A. Morgan:Journ. Math. Phys. 5, 1659 (1964);D. M. Fradkin:Journ. Math. Phys.,6, 879 (1965);R. F. O'Connell andD. R. Tompkins:Journ. Math. Phys.,6, 1952 (1965);T. W. B. Kibble:Journ. Math. Phys.,6, 1022 (1965);D. B. Fairlie:Nuovo Cimento,37, 897 (1965);D. J. Candlin:Nuovo Cimento,37, 1390 (1965);R. F. O'Connell andD. R. Tompkins:Nuovo Cimento,38, 1088 (1965);H. Steudel:Nuovo Cimento,39, 395 (1965);T. A. Morgan andD. W. Joseph:Nuovo Cimento,39, 494 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  19. E. T. Newmann andR. Penrose:Phys. Rev. Lett.,15, 231 (1965);J. N. Goldberg:Journ. Math. Phys.,8, 2161 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  20. The requirement of existence and continuity of all partial derivatives can be actually relaxed; seeR. Courant andD. Hilbert:Methods of Mathematical Physics, Vol1 (New York, 1953), p. 199;N. I. Akhiezer:The Calculus of Variations (New York, 1962), p. 208.

    ADS  Google Scholar 

  21. Our sign differs from that given, for instance, inR. Courant andD. Hilbert:Methods of Mathematical Physics, Vol.1, (New York, 1953), p. 191, and in most books on calculus of variations; it coincides however with that generally used in classical mechanics.

    ADS  Google Scholar 

  22. ——(7)

    Article  ADS  MathSciNet  Google Scholar 

  23. See for instanceP. Roman:Theory of Elementary Particles (Amsterdam, 1960), p. 220.

  24. The requirement of being «well behaved» on the orbit is discussed at length in (17)H. Steudel:Symmetrieeigenschaften und Erhaltungssätze, Dissertation (Jena, 1966).

  25. Z μ will therefore satisfy a continuity equation of the «second type», according to the classification introduced byH. Steudel:Zeits. Naturforsch.,17 a, 129 (1962).

    ADS  MathSciNet  Google Scholar 

  26. For a possible canonical formalism with vanishing Hessian, seeP. A. M. Dirac:Proc. Cambr. Phil. Soc.,29, 389 (1933);Can. Journ. Math.,2, 129 (1950);Proc. Roy. Soc., A246, 326 (1958);A. Mercier:Analytical and Canonical Formalism in Physics (Amsterdam, 1959), p. 199.

    Article  ADS  Google Scholar 

  27. R. Courant andD. Hilbert:Methods of Mathematical Physics, Vol.1 (New York, 1953), p. 193.G. Rosen:Formulations of Classical and Quantum Dynamical Theories (New York, 1969), p. 6;D. G. Currie andE. J. Saletan:Journ. Math. Phys.,7, 967 (1966).E. L. Hill:Rev. Mod. Phys.,23, 253 (1951),L. J. Tassie andH. A. Buchdahl:Austr. Journ. Phys.,17, 431 (1964); and inU. E. Schröder:Fortschr. Phys.,16, 357 (1968).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candotti, E., Palmieri, C. & Vitale, B. On the inversion of Noether's theorem in the Lagrangian formalism. Nuovo Cimento A (1965-1970) 70, 233–246 (1970). https://doi.org/10.1007/BF02758981

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02758981

Keywords

Navigation