Russian Journal of Developmental Biology

, Volume 31, Issue 5, pp 287–292 | Cite as

Distant wave-mediated interactions in early embryonic development of the loachMisgurnus fossilis L.

  • A. B. Burlakov
  • O. V. Burlakova
  • V. A. Golichenkov
Original Articles


Groups of loach (Misgurnus fossilis L.) embryos of different ages were kept in different quartz cuvettes for 20–24 h so that only optic contact between the groups was, possible. Subsequent observations showed that parameters of their development deviated from those in the control groups. Wave-mediated biocorrection proved to have both positive and negative effects, depending on the developmental stages of the interacting groups. Changes in spectral characteristics and polarization of biological radiation affected the results of the experiments. Various developmental abnormalities, caused by distant wave-mediated interactions of embryos and specific to each combination of developmental stages and conditions of optic communication are described.

Key words

teleost fish embryonic development wave-mediated biocorrection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burlakov, A.B., Intranspecific Wave Correction of Early Embryonic Development,Prostranstvenno-vremennaya organizatsiya ontogeneza (Spatiotemporal Organization of Individual Development), Romanov, Yu.A. and Golichenkov, V.A., Eds., Moscow: Mosk. Gos. Univ., 1998, pp. 183–193.Google Scholar
  2. Burlakov, A.B., Burlakova, O.V., Korolev, Yu.N., and Golichenkov, V.A., Distant Optic Interaction of Embryos of Lower Vertebrates during Development,Ontogenez, 1999a, vol. 30, no. 6, pp. 464–465.Google Scholar
  3. Burlakov, A.B., Burlakova, O.V., and Golichenkov, V.A., Distant Interactions of Loach Embryos Differing in Age,Dokl. Akad. Nauk, 1999b, vol. 368, no. 4, pp. 562–564.Google Scholar
  4. Burlakov, A.B., Anosov, V.N., Naumov, N.A.,et al., The Use of Physical Carriers for Analyzing Wave Information in Biological Systems, inElektromagnitnye izlucheniya v biologii (Electromagnetic Radiation in Biology), Kaluga, Izd-vo KGPU, 2000 (in press).Google Scholar
  5. Gurwitch, A.A.,Problema mitogeneticheskogo izlucheniya kak aspekt molekulyarnoi biologii (The Problem of Mitogenetic Radiation as an Aspect of molecular Biology), Leningrad: Meditsina, 1968.Google Scholar
  6. Gurwith, A.G. and Gurwitch, L.D.,Mitogeneticheskoe izluchenie, fiziko-khimicheskie osnovy i prilozheniya v biologii i meditsine (Mitogenetic Radiation: Physicochemical Bases and Applications in Biology and Medicine), Moscow: Medgiz, 1945.Google Scholar
  7. Kazanskaya, O.V., Effect of Ventral Mesoderm on Neural Differentiation inXenopus laevis, Cand. Sci. (Biol.) Dissertation, Moscow, 1993.Google Scholar
  8. Kazanskaya, O.V., Severtzova, E.A., Barth, K.A.,et al., ANF: A Novel Class of Homoeobox Genes Expressed at the Anterior End of the Main Embryonic Axis of Vertebrates,Gene, 1997, vol. 200, pp. 25–34.PubMedCrossRefGoogle Scholar
  9. Kaznacheev, V.P. and Mikhailova, L.P.,Sverkhslabye izlucheniya v mezhkletochnykh vzaimodeistviyakh (Ultraweak Radiation in Cell Interactions), Novosibirsk: Nauka, 1981.Google Scholar
  10. Kostomarova, A.A., The LoachMisgurnus fossilis L., inOb”ekty biologii razvitiya (Objects of Developmental Biology), Moscow: Nauka 1975, pp. 308–323.Google Scholar
  11. Kuzin, A.M.,Vtorichnye biogennye izlucheniya-luchi zhizni (Secondary Biogenic Radiation: Rays of Life), Pushchino: ONTIPNTS RAN, 1997.Google Scholar
  12. Magrou, J., Action a distance et embryogenese,Radiobiologiya, 1932, vol. 1, pp. 32–38.Google Scholar
  13. Magrou, J., Magrou, M., and Reiss, P., Actions a distance sur le developpement de l’oeuf d’Oursin. Essai d’interpretation,C.R.S. Acad. Sci., 1931, vol. 193, pp. 609–612.Google Scholar
  14. Moltchanov, A.A. and Galantsev, V.P., On the Functional Role of Spontaneous Photon Emission in the Mammary Gland, inBiophotonics: Non-equilibrium and Coherent Systems in Biology, Biophysics, Biotechnology.Proc. Int. A.G. Gurwitch Conf., Moscow: BioInform Services, 1995, pp. 341–350.Google Scholar
  15. Popp, F.-A., Coherent Proton Storage of Biological Systems, inElectromagnetic Bioinformation, Munchen: Urbun und Schwarzenbera, 1989, pp. 144–168.Google Scholar
  16. Popp, F.-A. and Chang, J.J., The Physical Background and the Informational Character of Biophoton Emission, inBiophotons, Dordrecht: Kluwer, 1998, pp. 239–250.Google Scholar
  17. Popp, F.-A., Buth, B., Bahr, W.,et al., Emission of Visible and Ultraviolet Radiation by Active Biological Systems,Collect Phenomena, 1981, vol. 3, pp. 187–214.Google Scholar
  18. Popp, F.-A., Gu, Q., and Li, K.H., Biophoton Emission: Experimental Background and Theoretical Approaches,Mod. Phys. Lett. B, 1994, vol. 8, pp. 1269–1296.CrossRefGoogle Scholar
  19. Sleptzova, L.A., Sil’chenko, D.A., Neklyudova, I.V.,et al., A Study of Regulative Blastula Capacities and Potencies of Dorsal Blastoderm Cells in the Loach,Ontogenez, 1999, vol. 30, no. 2, pp. 97–102.Google Scholar
  20. Zaraisky, A.G., Homeobox Genes of the Class ANF Regulate Early Development of the Anterior Head Region in Vertebrates,Doctoral (Biol.) Dissertation, Moscow, 2000.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • A. B. Burlakov
    • 1
  • O. V. Burlakova
    • 1
  • V. A. Golichenkov
    • 1
  1. 1.Biological FacultyMoscow State UniversityMoscowRussia

Personalised recommendations