Skip to main content
Log in

Fluorescence spectroscopy of potential electroluminescent materials: Substituent effects on DSB and segmented PPV derivatives

  • Special Papers
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The absorption and fluorescence of substituted distyrylbenzene (DSB) derivatives and segmented poly(phenylene vinylene) (PPV) derivatives are characterized by long-wavelength absorption maxima and absorption coefficients of λa = 380–450 nm, ε = 20,000–60,000 M−1 cm1 and fluorescence maxima, quantum yields, and decay times of λr = 440–530 nm, Φf = 0.2–0.9, and Τ = 0.8–2.5 ns, respectively. Alkoxy substituents at the central phenylene ring of DSB groups increase the bathochromic shift in the spectra in comparison to DSB, without a significant decrease in the high DSB fluorescence quantum yield. Both phenyl and cyano substitutions at the vinylene bridge lead to a further bathochromic shift of the fluorescence and a decrease in the quantum yield to ca. 0.4. The DSB derivatives and the related segmented PPV derivatives show nearly the same absorption spectra, fluorescence spectra, and radiative rate constantsk f= Φf/Τ, indicating the efficacy of the segmentation of the polymer chain. The radiative rate constants determined by the Φf and Τ values and by the Strickler/Berg formula are in reasonable agreement. This supports the possibility of interpreting the properties of the polymers in terms of their DSB units. The decrease in the emission anisotropy can be ascribed to multistep energy transfer processes between different oriented segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, and A. B. Holmes (1990)Nature 347, 539. D. Brown and A. J. Heeger (1991)Appl. Phys. Lett. 58, 1982. J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking (1996)Science 273, 884.

    Article  CAS  Google Scholar 

  2. D. Moses (1992)Appl. Phys. Lett. 60, 12215. F. Hide, B. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger (1996)Chem. Phys. Lett. 256, 424.

    Article  Google Scholar 

  3. H. Rost, S. Pfeiffer, A. Teuschel, and H.-H. and Hörhold (1997)Synth. Metals 84, 269.

    Article  CAS  Google Scholar 

  4. H.-H. Hörhold, H. Rost, A. Teuschel, W. Kreuder, and H. Spreitzer (1998)Proc. SPIE 3148, in press.

  5. W. Kreuder, D. Lupo, J. Salbeck, H. Schenk, T. Stehlin, H.-H. Hörhold, A. Lux, A. Teuschel, and M. Wieduwilt (1996) WO 96/10617, Hoechst AG.

  6. W. Kreuder, H.-H. Hörhold, and H. Rost (1997) DE 19532574A1 (OS 6.3.1997), Hoechst AG.

  7. K. Sandros, M. Sundahl, O. Wennerström, and U. Norinder (1990)J. Am. Chem. Soc. 112, 3082–3086.

    Article  CAS  Google Scholar 

  8. U. Mazzucato and F. Momicchioli (1991)Chem. Rev. 91, 1679–1719.

    Article  CAS  Google Scholar 

  9. R. Erckel and H. Frühbeis (1982)Z. Naturforsch 37b, 1472–1480.

    CAS  Google Scholar 

  10. K. Gustav and A. Geyer (1992)J. Prakt. Chem. 334, 505–508.

    Article  CAS  Google Scholar 

  11. S. J. Strickler and R. A. Berg (1962)J. Chem. Phys. 37, 814.

    Article  CAS  Google Scholar 

  12. Th. Förster (1948)Ann. Phys. 2, 55.

    Article  Google Scholar 

  13. G. Drefahl, R. Kühmstedt, H. Oswald, and H.-H. Hörhold (1970)Makromol. Chem. 131, 89

    Article  CAS  Google Scholar 

  14. H. Rost, H.-H. Hörhold, W. Kreuder, and H. Spreitzer (1998)Proc. SPIE 3148, in press

  15. H. Tillmann and H.-H. Hörhold (1997) Poster presented at PAT ’97, Polymers for Advanced Technology, Leipzig, Germany, Sept.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birckner, E., Grummt, UW., Rost, H. et al. Fluorescence spectroscopy of potential electroluminescent materials: Substituent effects on DSB and segmented PPV derivatives. J Fluoresc 8, 73–80 (1998). https://doi.org/10.1007/BF02758240

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02758240

Key Words

Navigation