Skip to main content

Fluorescence resonance energy transfer: FRET studies of ligand binding to cell surface receptors

Abstract

We describe a simple optical system employing fluorescence resonance energy transfer (FRET) to identify potential binding domains on the macrophage scavenger receptor for the ligand maleylated bovine serum albumin (mal-BSA). Using a plasma membrane vesicle system, we placed donor probes on the ligand and acceptor probes in the membrane to determine the distance of bound ligand from the cell surface. Two donors and three acceptors were employed. Transfer between ligand covalently modified with multiple dansyl molecules and hexadecanoylaminoeosin in the membrane yielded a distance of 46.5 ± 7.5 å; transfer from the same type of donors to octadecylrhodamine B in the membrane gave a distance of 58.5 ± 3.0 å. No transfer was observed between ligand mono-labeled with fluorescein and l,l′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanineperchlorate in the membrane. This suggests that the orientation of mal-BSA bound to the receptor places the fluorescein probe too far from the lipid surface to experience energy transfer. The distance information identifies a potential location for the binding site, which can be compared to structural information about the receptor and used to extract a binding sequence.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. L. Acton, P. E. Scherer, H. F. Lodish, and M. Kreiger (1994)JBC 269(33), 21003–21009.

    CAS  Google Scholar 

  2. 2.

    S. Acton, D. Resnick, M. Freeman, Y. Ekkel, J. Ashkenas, and M. Krieger (1993)JBC 268(5), 3530–3537.

    CAS  Google Scholar 

  3. 3.

    H. Arai, T. Kita, M. Yokode, S. Narumiya, and C. Kawai (1989)Biochem. Biophys. Res. Commun. 159(3), 1375–1382.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    B. Baird and D. Holowka (1988)Structural Mapping of Membrane-Associated Proteins: A Case Study of the IgE-Receptor Complex, CRC Press, New York.

    Google Scholar 

  5. 5.

    B. Baird and D. Holowka (1985)Biochemistry 24, 6252–6259.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    M. Brown and J. L. Goldstein (1983)Annu. Rev. Biochem. 52, 223–261.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    P. G. Butler and B. S. Hartley (1972)Methods Enzymol. 25, 191–199.

    CAS  Google Scholar 

  8. 8.

    L. Cantley Jr. and G. G. Hammes (1975)Biochemistry 14(13), 2976–2981.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    R. E. Dale, J. Eisinger, and W. E. Blumberg (1979)Biophys. J. 26, 161–194.

    PubMed  CAS  Google Scholar 

  10. 10.

    T. Dewey and G. Hammes (1980)Biophys. Soc. 32, 1023–1035.

    CAS  Google Scholar 

  11. 11.

    H. A. Dresel, E. Freidrich, D. P. Via, H. Sinn, R. Ziegler, and G. Schetter (1987)EMBO J. 6(2), 319–326.

    PubMed  CAS  Google Scholar 

  12. 12.

    G. Endemann, L. W. Stanton, K. S. Madden, C. M. Bryant, R. T. White, and A. A. Protter (1993)JBC 268(16), 11811–11816.

    CAS  Google Scholar 

  13. 13.

    M. Freeman, Y. Ekkel, L. Rohrer, M. Penman, N. J. Freedman, G. M. Chisholm, and M. Krieger (1991)Proc. Natl. Acad. Sci. USA 88, 4931–4935.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    B. Fung and L. Stryer (1978)Biochemistry 17(24), 5241–5248.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    J. L. Goldstein, Y. K. Ho, K. Basu, and M. S. Brown (1979)Proc. Natl. Acad. Sci. USA 76(1), 333–337.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    D. E. Greenwalt, R. H. Lipsky, C. F. Ockenhouse, H. Ikeda, N. N. Tandon, and G. A. Jamieson (1992)Blood 80(5), 1105–1115.

    PubMed  CAS  Google Scholar 

  17. 17.

    M. E. Haberland, C. S. Tannenbaum, R. E. Williams, D. O. Adams, and T. A. Hamilton (1989)J. Immunol. 142(3), 855–862.

    PubMed  CAS  Google Scholar 

  18. 18.

    G. G. Hammes (1981) in C. Frieden and L. W. Nichol (Ed.),Protein-Protein Interactions, John Wiley and Sons, New York, pp. 257–287.

    Google Scholar 

  19. 19.

    R. Haugland (1992)Molecular Probes: Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Eugene, OR.

    Google Scholar 

  20. 20.

    D. Holowka and B. Baird (1983)Biochemistry 22, 3466–3474.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    D. Holowka and B. Baird (1983)Biochemistry 22, 3466–3474.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    E. J. Husten, C. T. Esmon, and A. E. Johnson (1987)JBC 262(27), 12953–12961.

    CAS  Google Scholar 

  23. 23.

    D. Johnson and J. Nuss (1994)Biochemistry 33(31), 9070–9077.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    D. A. Johnson, R. Cushman, and R. Malekzade (1990)JBC 265(13), 7360–7368.

    CAS  Google Scholar 

  25. 25.

    T. Kodama, M. Freeman, L. Rohrer, J. Zabrecky, P. Matsudaira, and M. Krieger (1990)Nature 343, 533–535.

    Article  Google Scholar 

  26. 26.

    U. Kragh-Hansen (1990)Danish Med. Bull. 37(1), 57–81.

    PubMed  CAS  Google Scholar 

  27. 27.

    K. J. Longmuir, O. C. Martin, and R. E. Pagano (1985)Chem. Phys. Lipids 36, 197–207.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    E. Ottnad, D. P. Via, J. Frubis, H. Sinn, E. Friedrich, R. Ziegler, and H. A. Drese (1992)Biochem. J. 281, 745–751.

    PubMed  CAS  Google Scholar 

  29. 29.

    J. Pierce and C. H. Suelter (1977)Anal. Biochem. 82, 478–480.

    Article  Google Scholar 

  30. 30.

    S. Pin, C. A. Royer, E. Gratton, B. Alpert, and G. Weber (1990)Biochemistry 29, 9194–9202.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    E. J. Robertson (1987)Teratocarcinomas and Embryonic Stem Cells, IRL Press, Oxford, England.

    Google Scholar 

  32. 32.

    L. Rohrer, M. Freeman, T. Kodama, M. Penman, and M. Krieger (1990)Nature 43, 570–572.

    Article  Google Scholar 

  33. 33.

    B. Snyder and E. Freire (1982)Biophys. J. 40, 137–148.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    D. Steinberg, S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum (1989)N. Engl. J. Med. 320(14), 915–924.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    C. Valenzuela, A. Dowding, H. Arias, and D. Johnson (1994)Biochemistry 33, 6586–6594.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    C. F. Valenzuela, P. Weign, J. Yguerabide, and D. A. Johnson (1994)Biophys. J. 66, 674–682.

    PubMed  CAS  Google Scholar 

  37. 37.

    P. K. Wolber and B. S. Hudson (1979)Biophys. J. 28, 197–210.

    PubMed  CAS  Google Scholar 

  38. 38.

    Y. Zheng, B. Shopes, D. Holowka, and B. Baird (1991)Biochemistry 30, 9125–9132.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Tromberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Louie, A.Y., Tromberg, B.J. Fluorescence resonance energy transfer: FRET studies of ligand binding to cell surface receptors. J Fluoresc 8, 13–20 (1998). https://doi.org/10.1007/BF02758231

Download citation

Key words

  • Transmembrane protein
  • binding site
  • resonance energy transfer
  • intramolecular distances
  • modified low-density lipoprotein (LDL) receptor