Bulletin of Materials Science

, Volume 16, Issue 6, pp 665–678 | Cite as

Better ceramic substrates through zeolites

  • M A Subramanian
  • D R Corbin
  • U Chowdhry


A novel synthetic route for fabricating dense aluminosilicate-based ceramics at relatively low temperatures (⩽1000°C) is described. The method involves ion exchange of an appropriate zeolite powder, followed by fabrication and sintering, to form a dense ceramic. Anorthite, cordierite- andβ-spodumene-based ceramic substrates with attractive physical properties for microelectronic packaging are obtained using these unusual precursors. A brief overview on the property requirements for substrates used in microelectronic packaging is outlined at the beginning of the article.


Zeolites precursors ceramics microelectronic packaging anorthite cordierite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bedard R L and Flanigen E M 1990 US Patent 4 890 323Google Scholar
  2. Breck D W 1984Zeolite molecular sieves (Malabar, FL: Robert E Krieger Publishing) pp 493–498 and references thereinGoogle Scholar
  3. Chowdhry U and Sleight A W 1987Ann. Rev. Mater. Sci. 17 323CrossRefGoogle Scholar
  4. Chowdhry U, Corbin D R and Subramanian M A 1989 US Patent 4 814 303Google Scholar
  5. Corbin D R, Parise J B, Chowdhry U and Subramanian M A 1991Mater. Res. Soc. Sym. Proc. 223 213Google Scholar
  6. Dyer A 1988Zeolite molecular sieves (Great Britain: John Wiley and Sons) p. 12Google Scholar
  7. Genesse C and Chowdhry U 1986 inBetter ceramics through chemistry II (eds) C J Brinker, D E Clark and D R Ulrich (Pittsburgh, PA: Mater. Res. Soc. Proc. 73) pp 693–703Google Scholar
  8. Gdula R 1970Am. Ceram. Soc. Bull. 50 555Google Scholar
  9. Harper C A and Staley W E 1985Electr. Packag. Prod. 58Google Scholar
  10. Hayashi K and Fukui M 1980Sci. Technol. 29 58Google Scholar
  11. von Hippel A R 1954Dielectrics and waves (New York: John Wiley and Sons) p. 95Google Scholar
  12. Mussler B H and Shafer M W 1984Am. Ceram. Soc. Bull. 63 5Google Scholar
  13. Parise J B, Corbin D R and Subramanian M A 1989Mater. Res. Bull. 24 303CrossRefGoogle Scholar
  14. Roy R 1987Science 238 1664CrossRefGoogle Scholar
  15. Schwartz B 1984aJ. Phys. Chem. Solids 45 1051CrossRefGoogle Scholar
  16. Schwartz B 1984bAm. Ceram. Soc. Bull. 63 577Google Scholar
  17. Subramanian M A, Corbin D R and Farlee R D 1986Mater. Res. Bull. 21 1525CrossRefGoogle Scholar
  18. Subramanian M A, Corbin D R and Chowdhry U 1989 inCeramic substrates and packages for electronic applications (eds) M F Yan, K Niwa, H M O’Bryan Jr. and W S Young (Westerville, OH: Adv. in Ceramics 26) pp 239–247Google Scholar
  19. Thomas J M and Catlow C R A 1987 inProgress in inorganic chemistry (ed.) S J Lippard (New York: Wiley and Sons) Vol.35 p. 1CrossRefGoogle Scholar
  20. Tummala R R 1988Am. Ceram. Soc. Bull. 67 752Google Scholar
  21. Wilcox D L 1971Solid State Technol. 40Google Scholar
  22. Zelinski B J J and Uhlmann D R 1984J. Phys. Chem. Solids 45 1069CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1993

Authors and Affiliations

  • M A Subramanian
    • 1
  • D R Corbin
    • 1
  • U Chowdhry
    • 1
  1. 1.E. I. duPont de Nemours and CompanyCentral Research and Development, Experimental StationWilmington, DelawareUSA

Personalised recommendations