Skip to main content
Log in

High resolution X-ray diffraction studies of real structure of nearly perfect single crystals

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Real structure together with composition and elemental purity of single crystals controls their properties. This paper reviews recent work carried out at the National Physical Laboratory on application of high resolution X-ray diffractometry, topography and diffuse X-ray scattering for direct observation and characterization of real structure of single crystals of silicon, gallium arsenide, diamond and LiNbO3. A series of six multicrystal X-ray diffractometers have been designed, developed and fabricated indigenously. The most versatile of these systems is a five crystal X-ray diffractometer with state-of-the-art level resolution. These techniques and equipments have been applied in studying several interesting problems. Even in dislocation-free crystals of silicon, remarkable differences in the defect structure have been observed if the growth method was changed from float zone to Czochralski. Study of effect of externally applied electric fields and ion implantation on real structure of crystals has yielded interesting results. Images of ‘filaments’ which show nonhomogeneous distribution of electric current through semiconductors and insulators have been recorded for the first time in high resolution traverse topographs. Diffracted X-ray intensities could be modified by externally applied electric fields. It has been shown that implantation of BF +2 ions in silicon for producing shallow junctions does not produce homogeneous distribution of boron. The impurity is partially in clustered form. Biaxial stress introduced by thin depositions in substrate crystals are of considerable applied concern. The value and nature of stress have been determined in a number of systems. Typical results obtained on GaAs: multilayer metallizations are described. Also, degradation of perfection of substrates has been monitored. This work has shown that the stress is not homogeneously distributed and is quite anisotropic. A new high resolution X-ray diffraction technique has been developed for direct observation and study of forward diffracted X-ray beam and anomalous transmission of X-rays through ‘thin’ diamond crystals of varying degrees of perfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lal, K. High resolution X-ray diffraction studies of real structure of nearly perfect single crystals. Bull. Mater. Sci. 16, 617–642 (1993). https://doi.org/10.1007/BF02757659

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02757659

Keywords

Navigation