Skip to main content
Log in

Acoustic emission behaviour during stage II fatigue crack growth in an AISI type 316 austenitic stainless steel

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Acoustic emission (AE) behaviour during fatigue crack growth (FCG) in a ductile AISI type 316 austenitic stainless steel is reported. The two substages in the stage II Paris regime of FCG could be distinguished by a change in the rate of acoustic activity with increase in crack growth rate. The transition point in the cumulative ringdown count plot coincides with that in the da/dn plot. The AE activity increases with increase in ΔK during stage IIa and decreases during stage IIb. The major source of AE during stage IIa is found to be the plastic deformation within the cyclic plastic zone (CPZ) as compared to the phenomena such as monotonic plastic zone (MPZ) expansion, ductile crack growth, crack closure, etc. The increase in AE activity with increase in ΔK during stage IIa is attributed to the increase in the size of the CPZ which is generated and developed only under plane strain conditions. The decrease in AE activity during stage IIb is attributed to the decrease in the size of the CPZ under plane stress condition. The high acoustic activity during the substage IIa is attributed to irreversible cyclic plasticity with extensive multiplication and rearrangement of dislocations taking place within the CPZ. The AE activity is found to strongly depend on the optimum combination of the volume of the CPZ, average plastic strain range and the number of cycles before each crack extension. Based on this, an empirical relationship between the cumulative RDC and ΔK has been proposed and is found to agree well with experimentally observed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arthur McEvily J 1988ASTM STP-982 p. 35

  • ASM Metals Handbook 1968Properties and selection of materials (USA: ASM) 8th Edn. p. 423

    Google Scholar 

  • American Society for Testing and Materials 1986Standard test method for constant-load-amplitude fatigue crack growth rates above 10 −8m/cycle, ASTM E-647 (USA: ASTM)

    Google Scholar 

  • Birkheck G, Inckle A E and Waldron G W J 1971J. Mater. Sci. 4 319

    Article  Google Scholar 

  • Baldev Raj and Jayakumar T 1991ASTM STP-1077 p. 218

  • Daniel Smith R and Carpenter S H 1988J. Acoust. Emission 7 9

    Google Scholar 

  • Davidson D L and Lankford J 1983ASTM STP-811 p. 371

  • Dunegan H L and Tetelman A S 1971Engg. Fract. Mech. 2 387

    Article  Google Scholar 

  • Dunegan H L, Harris D O and Tatro C A 1968J. Engg. Fract. Mech. 1 105

    Article  CAS  Google Scholar 

  • Dunegan H L, Harris D O and Tetelman A S 1970Mater. Eval. 28 221

    Google Scholar 

  • Gerberich W W and Hartbower C E 1967Int. J. Fract. Mech. 3 185

    Google Scholar 

  • Grinberg G M 1982Int. J. Fatigue 4 83

    Article  CAS  Google Scholar 

  • Grinberg G M 1984Int. J. Fatigue 6 229

    Article  Google Scholar 

  • Guerra Rosa L and Radon J C 1989Advances in fatigue science and technology (eds) C Moura Branco and L Guerra Rosa (Netherlands: Kluwer Academic) p. 141

    Google Scholar 

  • Guerra Rosa L, Moura Branco C and Radon J 1984Int. J. Fatigue 6 17

    Article  Google Scholar 

  • Gurevich S E and Edidorich L D 1974Fatigue and fracture toughness of metals (Moscow, USSR: Nauka) p. 36

    Google Scholar 

  • Hahn G T, Hoagland R G and Rosenfield A R 1972Metall. Trans. A3 1189

    Article  Google Scholar 

  • Hamel F, Bailon J P and Bassim M N 1981Engg. Fract. Mech. 14 853

    Article  Google Scholar 

  • Harris D O and Dunegan H L 1974Exp. Mech. 2 71

    Article  Google Scholar 

  • Hartbower C E, Gerberich W W and Liebowitz H 1968Engg. Fract. Mech. 1 291

    Article  CAS  Google Scholar 

  • Hartbower C E, Reuter W G, Morais C F and Crimmins P O 1972ASTM STP 505 p. 187

  • Heiple C R and Carpenter S H 1987J. Acoust. Emission 6 177

    CAS  Google Scholar 

  • Hideo Kusanagi, Hideo Kimura, Hiromasa Imaeda, Tadao Ishihara and Shigeo Ohashi 1980Proc. of the 5th int. acoustic emission symposium, Tokyo p. 125

  • Jacques Lantegne and Jean-Paul Bailon 1981Metall. Trans. A12 459

    Google Scholar 

  • Laird C and Smith G C 1967Philos. Mag. 7 847

    Article  Google Scholar 

  • Lindley T C, Palmer I G and Richards C E 1978Mater. Sci. Engg. 32 1

    Article  CAS  Google Scholar 

  • Louat N, Sadananda K, Duesbery M and Vasudevan A K 1993Metall. Trans. A24 2225

    Google Scholar 

  • Masuda C, Ohta A, Nishijima S and Sasaki E 1980J. Mater. Sci. 15 1663

    Article  CAS  Google Scholar 

  • Moorthy V, Jayakumar T, Bhattacharya D K and Baldev Raj 1991Proc. int. symp. on fatigue and fracture of steel and concrete structures, Madras 1 219

    Google Scholar 

  • Moorthy V, Jayakumar T and Baldev Raj 1994 To be published

  • Mori Y, Sahakibara Y, Nagata T, Ohira T and Kishi T 1980Proc. of the 5th AE symp., Tokyo p. 465

  • Morton T M, Harrington R M and Bjelectich I G 1973Engg. Fract. Mech. 5 691

    Article  Google Scholar 

  • Navarro A and De Los Rios E R 1992Proc. R. Soc. London A437 375

    Google Scholar 

  • Neumann P, Fuhlrott H and Vehoff H 1979ASTM STP-675 p. 371

  • Ohira T, Kishi T and Horeuchi R 1980Proc. of the 5th int. AE symp. Tokyo p. 137

  • Palmer I G 1973Mater. Sci. Engg. 11 227

    Article  CAS  Google Scholar 

  • Paul Mclintire 1987Non-destructive testing handbook, acoustic emission testing (American Society for NDT) 2nd edn., p. 49

  • Pickard A C, Ritchie R O and Knott J F 1975Metals Tech. 6 253

    Google Scholar 

  • Rice J R and Thompson R 1974Philos. Mag. 29 73

    Article  CAS  Google Scholar 

  • Roven H J and Nes E 1991Acta Metall. 39 1735

    Article  CAS  Google Scholar 

  • Sturdy C B, Jones C, Titchmarch J M and Wadley H N G 1981Metal. Sci. 6 241

    Google Scholar 

  • Suresh S 1991Fatigue of materials (Cambridge: Cambridge University Press) p. 162

    Google Scholar 

  • Tanaka K, Masuda C and Nishijima S 1981Scr. Metall. 13 259

    Article  Google Scholar 

  • Wang Z F, Li J, Ke W, Zheng Y S, Zhu Z and Wang Z G 1992Scr. Metall. 27 1691

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moorthy, V., Jayakumar, T. & RAJ, B. Acoustic emission behaviour during stage II fatigue crack growth in an AISI type 316 austenitic stainless steel. Bull. Mater. Sci. 17, 699–715 (1994). https://doi.org/10.1007/BF02757552

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02757552

Keywords

Navigation